Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Составители В. А. Хямяляйнен М. А. Баёв

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ТОЧКИ

Методические указания к самостоятельной работе по дисциплине «Теоретическая механика»

Рекомендовано учебно-методической комиссией специальности 21.05.05 Физические процессы горного или нефтегазового производства в качестве электронного издания для использования в образовательном процессе

Рецензенты:

Сирота Д. Ю. – кандидат технических наук, доцент кафедры теоретической и геотехнической механики

Хямяляйнен Вениамин Анатольевич Баёв Михаил Алексеевич

Дифференциальные уравнения движения точки: методические указания к самостоятельной работе по дисциплине «Теоретическая механика» для обучающихся технических специальностей и направлений бакалавриата / сост.: В. А. Хямяляйнен, М. А. Баёв; Кузбасский государственный технический университет имени Т. Ф. Горбачева. – Кемерово, 2021. – Текст: электронный.

В предлагаемых указаниях представлены теоретические положения темы «Дифференциальные уравнения движения материальной точки» раздела «Динамика» курса «Теоретическая механика», задания для расчетнографической работы и указания для их выполнения.

- © Кузбасский государственный технический университет имени Т. Ф. Горбачева
- © В. А. Хямяляйнен, М. А. Баёв, составление, 2021

ВВЕДЕНИЕ

В методических указаниях приведены основные положения раздела теоретической механики «Дифференциальные уравнения движения материальной точки». Рассмотрены примеры решения основных типов обыкновенных дифференциальных уравнений. Приведены задания для выполнения расчетно-графической работы.

Для выполнения расчетно-графической работы необходимо знать основные законы динамики, уметь составлять дифференциальные уравнения движения материальной точки и поступательного движения твердого тела, представлять механический смысл начальных условий, уметь вычислять простейшие интегралы и определять постоянные интегрирования.

Цель издания — выработать у студентов элементы навыков моделирования технологических процессов методами классической механики Ньютона.

1. ТЕОРЕТИЧЕСКИЕ ПРЕДПОСЫЛКИ

Решение основных задач динамики точки поступательного движения твердого тела сводится к решению дифференциальных уравнений движения, которые являются проекциями основного уравнения динамики $m\overline{a} = \overline{F}$ на оси координат. В случае свободной материальной точки дифференциальные уравнения движения в проекции на оси декартовой системы координат запишутся в виде

$$m\ddot{x} = X; \quad m\ddot{y} = Y; \quad m\ddot{z} = Z.$$
 (1)

В проекциях на оси естественной системы координат в виде

$$m\frac{d^2S}{dt^2} = F_{\tau}; \quad m\frac{1}{\rho} \left(\frac{dS}{dt}\right)^2 = F_n; \quad O = F_{\theta}, \tag{2}$$

где m — масса точки (тела); x, y — декартовые координаты; S — дуговая координата; X, Y — проекции равнодействующей сил на декартовые оси координат; $F_{\tau}, F_{n}, F_{\theta}$ — проекции равнодействующей сил на оси естественной системы координат.

Ограничиваясь в дальнейшем только координатным способом задания движения точки, общее решение (общий интеграл) системы дифференциальных уравнений (1) можно записать в виде

$$x = x(t, C_1, C_2, ..., C_6);$$

$$y = y(t, C_1, C_2, ..., C_6);$$

$$z = z(t, C_1, C_2, ..., C_6).$$
(3)

Постоянные интегрирования $C_1, C_2, ..., C_6$ определяются из начальных условий:

при $t = t_0 = 0$:

$$x = x_0, \quad \dot{x} = \dot{x}_0;$$

 $y = y_0, \quad \dot{y} = \dot{y}_0;$
 $z = z_0, \quad \dot{z} = \dot{z}_0,$
(4)

где x_0, y_0, z_0 — начальные координаты; $\dot{x}_0, \dot{y}_0, \dot{z}_0$ — проекции начальной скорости на оси координат.

В случае независимости движения точки вдоль каждой из осей координат общее уравнение (3) запишется в виде

$$x = x(t, C_1, C_2); \quad y = y(t, C_3, C_4); \quad z = z(t, C_5, C_6)$$
 (5)

Ограничиваясь рассмотрением случая движения точки в одной плоскости, из (5) и (4) получим следующую систему четырех алгебраических уравнений для определения постоянных интегрирования

$$x_0 = x(t_0, C_1, C_2); \quad \dot{x}_0 = x(t_0, C_1, C_2); y_0 = y(t_0, C_3, C_4); \quad \dot{y}_0 = y(t_0, C_3, C_4).$$
 (6)

Система уравнений (6) получена путем подстановки начальных условий (4) в выражения для координат x, y (5) и их производных \dot{x} , \dot{y} .

В случае одномерного движения уравнения (5) будут представлены только одним уравнением (например, первым) и уравнения (6) запишутся в виде

$$x_0 = x(t_0, C_1, C_2), \quad \dot{x}_0 = x(t_0, C_1, C_2).$$

Рассмотрим основные приемы решения (интегрирования) дифференциальных уравнений (1), ограничиваясь случаем получения их решений в виде (5). Основной прием – применение метода разделения переменных и других, приводимых к нему. Суть данного приема заключается в понижении порядка каждого из дифференциальных уравнений (1), приведении уравнения к двум переменным, разделении переменных на левую и правую части уравне-

ния и интегрировании левой и правой частей полученного уравнения по соответствующей переменной. В результате первого интегрирования получают проекции скоростей точки на оси координат в виде функций времени или координат, то есть, как говорят в механике, — первые интегралы. Затем проекции скоростей представляют в виде производных по времени, то есть записывают в виде дифференциальных уравнений первого порядка. Разделяют переменные и интегрируют. Получают координаты точки в виде функций времени, то есть, как говорят в механике, — вторые интегралы.

Сложность интегрирования дифференциальных уравнений (1) определяется сложностью их правых частей. На примере интегрирования одного уравнения рассмотрим наиболее простейшие типовые случаи.

1.
$$\frac{m\ddot{x} = X = \text{const}}{dt}$$
.

 $m\frac{dV_x}{dt} = X$; $mdV_x = Xdt$; $m\int dV_x = \int Xdt + C_1$;

 $mV_x = Xt + C_1$; $m\frac{dx}{dt} = Xt + C_1$;

 $mdx = (Xt + C_1)dt$; $mx = X\frac{t^2}{2} + C_1t + C_2$.

Определим постоянные интегрирования из начальных условий при $t = t_0 = 0$:

$$\begin{split} x &= x_0; \quad \dot{x} = V_{0_x}; \\ mx_0 &= X \frac{t_0^2}{2} + C_1 t_0 \text{ и } m \dot{x}_0 = X t_0 + C_1. \\ 2. \ \underline{m \ddot{x} = X(t)}. \\ m \frac{dV_x}{dt} &= X(t); \quad m dV_x = X(t) dt; \quad m \int dV_x = \int X(t) dt; \quad m \frac{dx}{dt} = X(t) dt + C_1; \\ m dx &= \big[X(t) dt + C_1 \big] dt; \quad mx = \int \big[X(t) dt + C_1 \big] dt + C_2. \end{split}$$

Постоянные интегрирования определяются аналогично после интегрирования с учетом конкретного вида функции X(t).

3.
$$\frac{m\ddot{x} = X(t)}{m\frac{dV_x}{dt} = X(V_x)}; \quad \frac{d(V_x)}{X(V_x)} = dt; \quad m = \int \frac{dV_x}{X(V_x)} = t + C_1.$$

После взятия интеграла получаем выражение для V_x в виде некоторой функции времени

$$V_x = f(t, C_1); \quad V_x = \frac{dx}{dt};$$

$$\frac{dx}{dt} = f(t, C); \quad dx = f(t, C_1)dt; \quad x = \int f(t, C_1)dt + C_2.$$

Постоянные интегрирования определяются аналогично после интегрирования с учетом конкретного вида функции $X(V_x)$.

4.
$$\frac{m\ddot{x} = X(x)}{m\frac{dV_x}{dt}} = X(x); \quad m\frac{dV_x}{dt} \cdot \frac{dx}{dx} = X(x); \quad mV_x dV_x = X(x) dx;$$
$$m\int V_x dV_x = \int X(x) dx + C_1; \quad V_x = \frac{dx}{dt};$$
$$\frac{dx}{\sqrt{\frac{2}{m} \left[\int X(x) dx + C_1 \right]}} = dt; \quad \int \frac{dx}{\sqrt{\frac{2}{m} \left[\int X(x) dx + C_1 \right]}} = t + C_2.$$

Постоянные интегрирования определяются аналогично после взятия соответствующих интегралов.

5.
$$m\ddot{x} = X(t, V_x) = f(t) \varphi(V_x).$$

$$m\frac{dV_x}{dt} = f(t)\varphi(V_x); \quad m\frac{dV_x}{\varphi(V_x)} = f(t)dt; \quad m\int \frac{dV_x}{\varphi(V_x)} = \int f(t)dt + C_1.$$

После взятия интеграла выражаем $V_x = F(t, C_1)$.

$$\frac{dx}{dt} = F(t, C_1); \quad dx = F(t, C_1)dt; \quad m \int \frac{V_x dV_x}{\varphi(x)} = \int f(t) dx + C_1.$$

Постоянные интегрирования определяются после взятия соответствующих интегралов.

6.
$$\frac{m\ddot{x} = X(x, V_x) = f(x) \varphi(V_x)}{mV_x \frac{dV_x}{dx} = f(x)\varphi(x); \quad m\frac{V_x dV_x}{\varphi(x)} = f(x)dx + C_1.$$

Выражаем V_{χ} в виде

$$V_x = F(x, C_1); \quad V_x \frac{dx}{dt};$$

$$\frac{dx}{dt} = F(C_1, x); \quad \frac{dx}{F(x, C_1)} = dt; \quad \int \frac{dx}{F(x, C_1)} t + C_2.$$

Постоянные интегрирования определяются после взятия соответствующих интегралов.

Следует отметить, что в вышеприведенных общих решениях предполагается существование интегралов в виде аналитических функций, в противном случае точное решение невозможно и необходимо использовать приближенные численные методы.

Рассмотрим приближенное численное интегрирование дифференциального уравнения движения. С точки зрения теории дифференциальных уравнений решение уравнения движения с учетом записанных начальных условии можно рассматривать как известное решение задачи Коши для обыкновенного дифференциального уравнения второго порядка. Одним из эффективных численных методов решения этой задачи является метод Рунге-Кутта, позволяющий строить схемы различного порядка точности. Суть метода заключается в сведении решения уравнения второго порядка к системе двух уравнений первого порядка и применении к каждому уравнению вышеуказанной схемы с заданным шагом разбиения области изменения аргумента. Для использования стандартной программы метода Рунге-Кутта в каждой конкретном случае необходимо знать специфику обращения к ней.

Учение о колебаниях составляет основу ряда областей физики и техники. Хотя колебания, рассматриваемые в различных областях, например в механике, радиотехнике, электротехнике и др., отличаются друг от друга по своей физической природе, основные законы этих колебаний во всех случаях остаются одними и теми же.

Так, в курсе электротехники показано, что колебания простого электрического контура описываются уравнениями, аналогичными уравнениям колебаний точки. Дифференциальные уравнения механических колебаний точки имеют вид:

а) свободные колебания:

$$\ddot{x} + k^2 \cdot x = 0,$$

где k – коэффициент восстановления;

б) затухающие колебания:

$$\ddot{x} + \gamma \cdot \dot{x} + k \cdot x = 0,$$

где ү – коэффициент сопротивления;

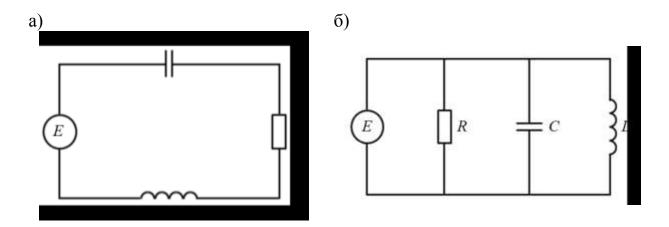
в) вынужденные колебания:

$$\ddot{x} + \dot{x} + k \cdot x = f(t),$$

где f(t) – возмущающая сила.

Если электрический контур состоит из конденсатора емкости C, катушки самоиндукции L, сопротивления R и источника электродвижущей силы E, то дифференциальное уравнение колебаний в электрическом контуре имеет вид:

для цепи с последовательным соединением а)


$$L \cdot \ddot{q} + R \cdot \dot{q} + \frac{q}{C} = E(t), \tag{1}$$

где q — заряд электричества; E — ЭДС источника напряжений;

для цепи с параллельным соединением б)

$$C \cdot \ddot{u} + \frac{1}{C} \cdot \dot{u} + \frac{u}{L} = \frac{dI}{dt},\tag{2}$$

где u — падение напряжения между узлами; I — ток источника.

Уравнения (1) и (2) являются дифференциальными уравнениями второго порядка с постоянными коэффициентами, общий вид которых выражается следующим уравнением $\ddot{y} + p \cdot \dot{y} + q \cdot y = f(t)$. Для решения однородного уравнения составляется характеристическое уравнение и в зависимости от корней этого уравнения записывается общее решение исходного дифференциального уравнения

№ п/п	Корни характеристического уравнения	Вид общего решения дифференциального уравнения				
1	α_1, α_2 – вещественные числа, $\alpha_1 \neq \alpha_2$	$y = C_1 \cdot e^{\alpha_1 \cdot x} + C_2 \cdot e^{\alpha_2 \cdot x}$				
2	α_1, α_2 – вещественные числа, $\alpha_1 = \alpha_2 = \alpha$	$y = (C_1 + C_2 \cdot x) \cdot e^{\alpha \cdot x}$				
3	α_1, α_2 — мнимые числа, $\alpha_{1, 2} = a \pm b \cdot i$	$y = (C_1 \cdot \cos b \cdot x + C_2 \cdot \sin b \cdot x) \cdot e^{a \cdot x}$				
C_1 и C_2 – постоянные интегрирования, которые определяются по начальным						

 C_1 и C_2 — постоянные интегрирования, которые определяются по начальным условиям задачи

В случае неоднородного дифференциального уравнения общее решение состоит из общего решения однородного уравнения, соответствующего данному, и частного решения в зависимости от вида правой части исходного дифференциального уравнения.

В целом умение составлять и решать дифференциальные уравнения движения открывает широкие возможности для моделирования физических процессов. С целью привития студенту элементов навыков математического моделирования ниже приведены индивидуальные задания по моделированию физических процессов строительного производства и технологических процессов в электротехнических устройствах.

Задание 1. Моделирование нанесения набрызг-раствора на поверхность здания.

На вертикальную стену наносится набрызг-бетон для создания декоративно-изоляционного слоя типа «шуба». Нагнетание раствора осуществляется растворонасосом типа «СО» с производительностью Q, м³/ч. Скорость частицы раствора на выходе из нагнетательной насадки — V_0 , м/с. Высота нанесения набрызг-бетона — h, м. Расстояние от здания до насоса — L, м. Угол наклона нагнетательной насадки к горизонтальной поверхности α °. Внутренний диаметр насадки – d, м. Оптимальный угол между вектором скорости и поверхностью здания для обеспечения качественной адгезии (прилипания) раствора к стенке — β °. Время движения частицы раствора от нагнетательной насадки до стены — T, с. Скорость частицы раствора в момент касания стены здания — $V_{\rm K}$, м/с. Сопротивлением воздуха пренебречь.

По величинам, заданным в табл. 1, определить следующее:

- 1. Неизвестные величины, приведенные в табл. 1.
- 2. Внутренний диаметр насадки d и производительность насоса исходя из величины V_0 .
 - 3. Максимальную высоту подъема частицы раствора.

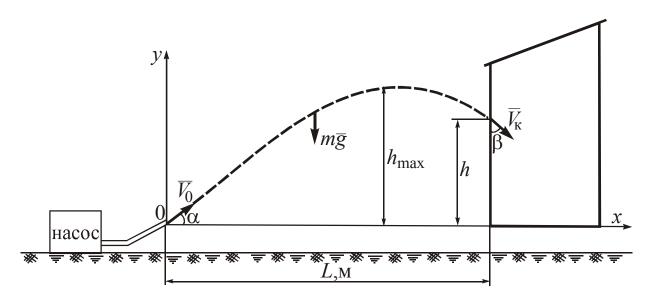


Рис. 1. Схема к моделированию нанесения набрызг-раствора

Указания к выполнению задания 1

- 1. Запишите основное уравнение динамики частицы раствора.
- 2. Спроецируйте основное уравнение динамики на оси коор-

динат и запишите дифференциальное уравнения движения.

- 3. Проинтегрируйте дифференциальные уравнения движения.
- 4. Определите постоянные интегрирования.
- 5. Определите неизвестные величины табл. 1, рассматривая полученные выражения для координат и проекций скоростей в момент касания частицы раствора поверхности здания.
- 6. Подберите производительность насоса и внутренний диаметр насадки исходя на соотношения $V_0 = \frac{Q}{\pi d^2/4}$.
- 7. Для определения h_{\max} исследуйте функцию y = y(x) на экстремум.

Задание 2. Моделирование транспортирования строительных материалов.

С кирпичного завода на строительную площадку с помощью пневмотрубопроводного транспорта производится транспортировка кирпича в контейнерах под действием силы давления сжатого воздуха. Длина трубопровода — L, м. Начальная скорость контейнера $V_0=0$. Количество кирпичей в контейнере — n, шт. Масса одного кирпича — m=2 кг. Время движения контейнера по трубопроводу — T, с. Производительность транспортной линии — Q, шт./ч. Скорость контейнера на выходе из трубопровода — $V_{\rm K}$, м/с. Сила давления сжатого воздуха с учетом потерь на сопротивление движению — F, Н. Контейнеры транспортируются по одному. Массой пустого контейнера пренебрегаем.

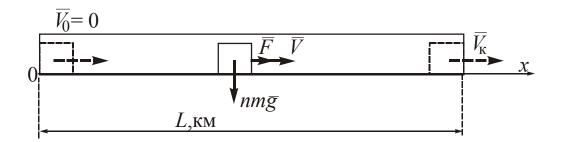


Рис. 2. Схема моделирования пневмотрубопроводного транспорта

По данным табл. 2 определить следующее.

1 Скорость контейнера на выходе $V_{\rm K}$ и производительность

транспортной линии Q, если F = C(T - t), где t – текущее время, с; C и T – константы.

- 2. Длину трубопровода L и производительность транспортной линии Q, если $F = \frac{\varepsilon}{1+V}$, где V- текущая скорость, м/с; $\varepsilon-$ константа.
- 3; Скорость контейнера на выходе $V_{\rm K}$ и производительность транспортной линии Q, если F=a(L-x) где x текущая координата, м; a и L константы.

Указания к выполнению задания 2

- 1. Запишите основное уравнение динамики.
- 2. Запишите дифференциальное уравнение движения для каждого из трех случаев.
- 3. Проинтегрируйте каждое из трех дифференциальных уравнений.
 - 4. Определите постоянные интегрирования.
- 5. Производительность транспортной линии определяется по формуле $Q = \frac{n}{T} 3600$.

Задание 3.

При строительстве фундаментов зданий и других сооружений, например подпорных стенок, береговых и промежуточных опор, фундаментов водоспускных труб в сложных условиях, опор путепроводов малых и средних мостов, широко используют сваи, забиваемые в грунт ударным молотом. Получив некоторую начальную скорость V_0 , м/с, свая длиной l, м² погружается поступательно в грунт. При движении свая, помимо действия силы тяжести, испытывает сопротивление среды, пропорциональное или первой степени скорости $R_{C_1} = \alpha V$, H, или пропорциональное ее перемещению, $R_{C_2} = cx$, H (α , c = const – коэффициенты пропорциональности).

Определить:

- 1. Закон движения сваи в грунте.
- 2. Величины, указанные в табл. 3, если T время движения сваи, c; $V_{1,\,2}$ ее скорость в этот момент, м/c; $X_1,\,X_2$ углубление сваи за T с при различных видах сопротивления.

Удельный вес железобетона $\gamma = 2.5 \cdot 10^4 \text{ H/m}^3$.

Указания к выполнению задания 3

- 1. Запишите основное уравнение динамики.
- 2. Запишите дифференциальные уравнения в проекции на ось X.
 - 3. Проинтегрируйте полученные уравнения.
- 4. Определите постоянные интегрирования и запишите уравнения движения сваи.
 - 5. Найдите величины, указанные в табл. 3.

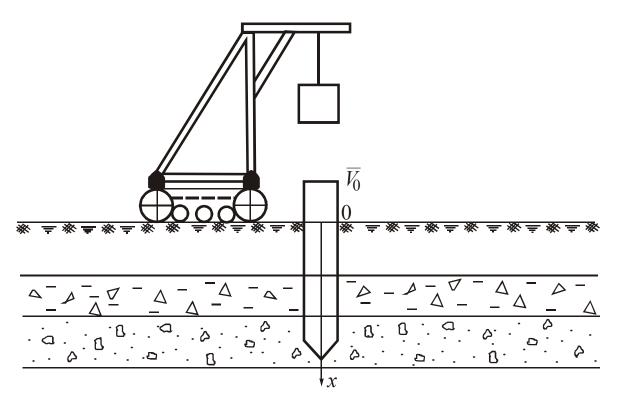


Рис. 3. Схема движения сваи в грунте

Задание 4.

Схемы (рис. 4) представляют замкнутую электрическую цепь, обладающую емкостью C, индуктивностью L, активным сопротивлением R и источником электродвижущей силы E. Определить величины, указанные в табл. 4 в столбце «Найти». Необходимые для решения данные приведены в этой же таблице.

Указания к выполнению задания

- 1. Запишите дифференциальное уравнение для электрической цепи, изображенной на схеме (рис. 4).
 - 2. Проинтегрируйте полученное уравнение.
- 3. Определите постоянные интегрирования, исходя из начальных условий задачи.
- 4. Графически представьте график изменения искомой величины.

Выбор варианта задания определяется следующим способом:

- номер схемы по последней цифре номера зачетной книжки;
- номер числовых данных соответствует предпоследней цифре номера зачетной книжки.

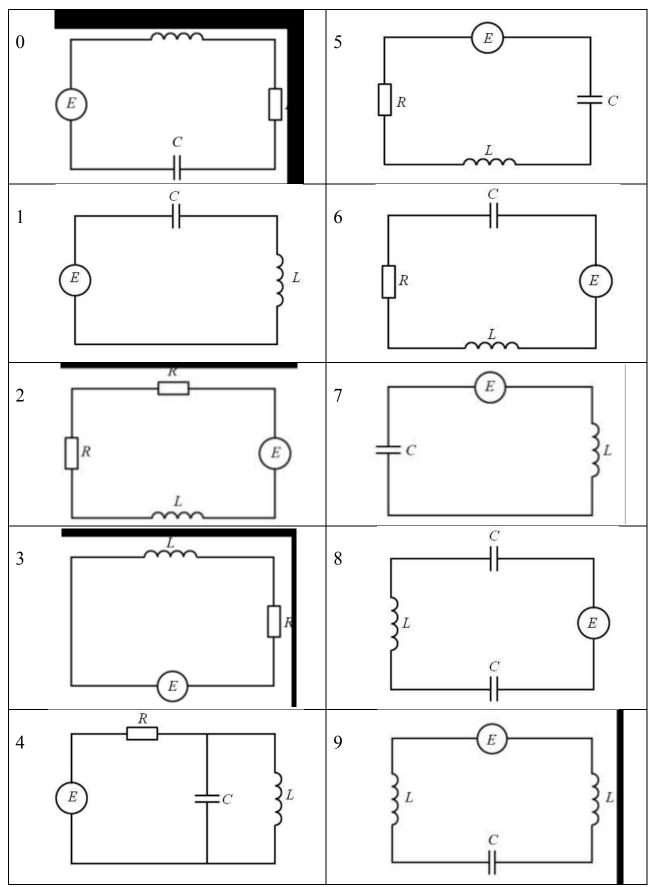


Рис. 4. Схемы электрической цепи

Таблица 1

№ вари-	<i>T</i> , c	α,	β, град	V_c , m/c	V_{κ} , m/c	<i>L</i> , м	<i>h</i> , м	
анта	1,0	град	р, град	V_C , WI/C	V_K , M/C	L, M	71, IVI	
1	_	75	_	13,9	7,18		_	
2	2,05	_	_	14,7	_	_	5,52	
3	_	_	45	15,1	_	15,84	_	
4	1,40	75	_	_	16,82	_	_	
5	1,45	_	_	19,4	_	_	3,77	
6	_	75	_	_	_	26,11	4,04	
7	2,30	_	_	16,5	_	18,99	_	
8	2,35	_	45	_	11,93	_	_	
9	2,40	60	_	17,2	_	_	_	
10	2,15	_	_	14,9	_	_	8,30	
11	1,75	_	_	12,1	_	_	5,50	
12	_	75	_	_	7,36	_	7,54	
13	1,40		75	_	_	15,6	_	
14	_	45	_	15,9	_	_	5,05	
15	1,35	_	_	14,8	10,81	_	_	
16	1,25	1	_	_	3,29	_	5,61	
17	_	60	_	15,5	1	13,76	_	
18	1,35	ı	60	_	6,22	1	_	
19	_	30	_	_	1	29,11	4,04	
20	1,45	_	_	12,8	_	4,79	_	
21	1,55	_	_	10,8	5,57	_	_	
22	_	_	30	14,2	_		7,54	
23	2,10		45		10,66		_	
24	_	60	_	15,8	_	17,4	_	
25		60		16,5			6,95	

Таблица 2

№ вари- анта	F = c(T - t), H $(c = 3.10^{-5})$			$\frac{e}{+V}$, H $\cdot 10^{-5}$)	F = a(L - x), H $(a = 3 \cdot 10^{-5})$		
	п, шт.	L, км	<i>п</i> , шт.	L, км	<i>n</i> , шт.	L, км	
1	400	10	100	0,1	200	1	
2	300	9	200	0,9	300	2	
3	200	8	300	0,8	400	3	
4	100	7	400	0,7	100	4	
5	400	6	100	0,6	200	5	
6	300	5	200	0,5	300	6	
7	200	4	300	0,4	400	7	
8	100	3	400	0,3	100	8	
9	400	2	100	0,2	200	9	
10	300	1	200	0,1	300	10	
11	200	10	300	0,9	400	1	
12	100	9	400	0,8	100	2	
13	400	8	100	0,7	200	3	
14	300	7	200	0,6	300	4	
15	200	6	300	0,5	400	5	
16	100	5	400	0,4	100	6	
17	400	4	100	0,3	200	7	
18	300	3	200	0,1	300	8	
19	200	2	300	0,9	400	9	
20	100	1	400	0,8	100	10	
21	400	10	100	0,7	200	1	
22	300	9	200	0,6	300	2	
23	200	8	300	0,5	400	3	
24	100	7	400	0,3	100	4	
25	400	6	100	0,1	200	5	

Таблица 3

№	I	d,	$\alpha \cdot 10^5$	$c \cdot 10^4$	V_0 ,	Т,	V_1 ,	X_1 ,	V_2 ,	γ ₂ ,
вар.	L, M	d , M^2	Н.с/м	м/с	_M /c	c	_M /c	M	_M /c	M
1	8	_	2,0	4,8	10,0	0,01	9,4	0,09	_	_
2	10	0,25	_	4,6	9,6	0,01	9,05	0,02	_	_
3	_	0,12	1,8	5,0	8,4	0,03	7,6	0,24	_	
4	8	0,16	1,2	4,2	_	0,02	7,6	_	_	0,16
5	8	0,12	_	4,0	8,2	0,01	7,7	0,08	_	_
6	_	0,12	1,6	4,4	7,8	0,03	6,9	0,22	_	_
7	10	0,16	2,0	4,6	-	0,03	_	_	8,2	_
8	12	0,25	1,2	4,8	10,0	_	9,8	0,19	_	_
9	8	_	1,6	4,6	8,4	0,01	7,9	0,08	-	_
10	8	0,16	_	4,4	7,6	0,04	6,2	0,27	_	_
11	10	0,16	1,6	4,2	_	0,03	7,7	_	_	0,25
12	12	0,25	1,2	4,8	7,8	_	7,0	0,15	_	_
13	8	0,16	1,2	4,8	1	0,01	_	_	8,0	0,08
14	10	1	2,0	5,0	10,0	0,02	8,9	0,19	1	_
15	10	0,12	_	4,6	8,2	0,03	7,2	0,23	1	_
16	_	0,16	1,2	4,7	8,4	0,03	8,2	0,16	1	_
17	3	0,25	1,6	5,0	7,8	_	7,6	0,07	1	_
18	8	0,16	_	4,8	10,0	0,01	9,5	0,09	1	_
19	8	0,12	2,0	4,6	1	0,05	_	_	4,6	_
20	10	_	1,6	4,6	9,2	0,015	8,8	0,13	_	_
21	12	0,25	1,2	4,2	_	0,025	_	_	9,8	0,24
22	12	0,16	1,2	5,0		0,02	8,2	_	_	0,17
23	8	0,12	1,6	4,8	10,0	_	8,5	0,21		
24	8	0,16	2,0	5,2		0,02	7,8	0,16	1	
25	10	0,16	1,6	4,8	_	0,01	7,8	_	_	0,08

Таблица 4

Номер	<i>С</i> , мкФ	L , м Γ н	<i>R</i> , Ом	<i>E</i> _M , B	Начальны		
схемы					q, Кл	i, A	Найти
0	2,0	8,0	100	50	0	0,1	i
1	1,6	12,0	120	60	0,1	0,4	q
2	0,5	10,0	200	20	0	0	i
3	1,4	32,0	150	120	0,1	0,2	q
4	0,8	18,0	180	80	0,1	0	i
5	0,6	12,0	140	150	0	0,5	i
6	1,2	24,0	160	140	0,2	0	q
7	1,4	16,0	130	30	0	0,1	i
8	1,5	6,0	158	160	0,2	0	q
9	2,0	35,0	170	200	0	0,6	i

Замечание. Если на схеме, соответствующей варианту, нет какой-либо характеристики (L, R, C), то ее числовым значением в таблице пренебречь.

Вопросы к защите задания

- 1. Как формулируется вторая задача динамики?
- 2. Сколько дифференциальных уравнений составляется при движении точки в пространстве и в плоскости?
- 3. В чем заключается механический смысл начальных условий?
- 4. Какие существуют методы для решения дифференциальных уравнений движения точки?
 - 5. Как определяются постоянные интегрирования?

Литература

1. Бать, М. И. Теоретическая механика в примерах и задачах. Том 2: Динамика / М. И. Бать, Г. Ю. Джанелидзе, А. С. Кельзон. — 10-е изд., стер. — Санкт-Петербург : Лань, 2021. — 640 с. — ISBN 978-5-8114-1021-7. —

URL: https://e.lanbook.com/book/168475 (дата обращения: 15.04.2021). – Текст : электронный.

- 2. Диевский, В. А. Теоретическая механика: учебное пособие / В. А. Диевский. 4-е изд., испр. и доп. Санкт-Петербург: Лань, 2021. 336 с. ISBN 978-5-8114-0606-7. URL: https://e.lanbook.com/book/168899 (дата обращения: 15.04.2021). Текст: электронный.
- 3. Бабичева, И. В. Теоретическая механика. Примеры и задания для самостоятельной работы / И. В. Бабичева, И. А. Абрамова. Санкт-Петербург: Лань, 2020. 208 с. ISBN 978-5-8114-4317-8. URL: https://e.lanbook.com/book/138154 (дата обращения: 15.04.2021). Текст: электронный.
- 4. Хямяляйнен, В. А. Теоретическая механика: учебное пособие для студентов технических вузов и колледжей / В. А. Хямяляйнен; Министерство науки и высшего образования Российской Федерации, Кузбасский государственный технический университет им. Т. Ф. Горбачева. 3-е изд. Кемерово, 2020. 227 с. URL: http://library.kuzstu.ru/meto.php?n=91800&type=utchposob:common. Текст: непосредственный + электронный.