MWHHMCTEPCTBO HAYKHW 1 BBICHIETO OBPA3OBAHUS POCCUHCKOM ®EJEPAIIANA
®enepajbHOE TOCyIapCcTBEeHHOE 0I0/IZkeTHOE 00pa3oBaTe/ibHOE yUpe:KAeHHe BhIcIIero 00pa3oBaHust

«Ky30acckuii rocynapcrBeHHbIN TexHnYeckuii yausepcurer umenu T. @. I'opdayeBar»

CocraBurenu
I1. A. CtpenbHUKOB
M. M. I'opbaueBa

HHOCTPAHybIﬁ SI3BIK
JIJISI IPUKJIATHOU NTHOOPMATUKHU

Meroanyeckue MaTepuaJibl
Pexomen0BaHO yueOHO-METOIMUECKON KOMUCCHEH
HarnpaBnenus noarotoBku 09.04.03 [puknannas napopmaTrka

B Ka4YCCTBC 3JICKTPOHHOT'O U3AaHUA
JJIs1 UCITOJIB30BAHUSA B 06paBOBaT€J'IBHOM Imponecce

Kemeposo 2019

PenenzenTnl

3uukuna JI. C. — [OKTOp MeJarornyeckux HayK, 3aBeayromuid kadeapoil
MHOCTPAHHBIX SI3BIKOB, Mpodeccop Kadeapbl HHOCTPAHHBIX SI3BIKOB.
[lumonoB A. I'. — JOKTOp TEXHUYECKHUX HayK, Ipelacenareiab y4eOHO-

MeToandeckoi komuccuu HampaBieHus mnoarotoBku 09.04.03 Ilpuxnamnas
uH(pOpMaTHKA.

CrpeabnnkoB IlaBea AsiekceeBu4

I'op6aueBa Mapuna MuxaiioBHa

HNHocTpaHHBIA A3BIK ISl NPUKJIAAHOA HHPOPMATHKH. METOIUYECKUE
MaTepHuasibl [DIEKTPOHHBIN pecypc]| s oOydarouuxcsl HarpaBiICHUS! MOJATOTOBKU
09.04.03 IlpuknagHas wuHpoOpMaTuka oOuHOM (opmbl 00ydeHuss / COCT.
I1. A. CtpenbaukoB, M. M. I'op6auea; Ky3['TY. — Kemeposo, 2019.

[lenpr0 METOAMYECKHX MATEPUAIOB SIBISETCS TMOMOIIb B NPAKTHYECKOM
OBJIQZICHUM HABBIKAMHU II€PEBOJA CIEHUAIN3UPOBAHHON WHOCTPAHHOM JIMTEPATYPHI
10 HAINpaBJIEHUIO MOATOTOBKHU JJI1 AKTUBHOTO MCIIOJIb30BaHUA B MPO(hecCHOHATbHOM
NEATEIIBHOCTH.

© Ky3I'TY, 2019

© CrpenbHukos I1. A.,
I'op6aueBa M. M.,
cocrapjenue, 2019

IpeauciaoBue

[lenpto METOAMYECKHUX MATEPUAIIOB SIBISETCA IOMOLIb B IMPaKTUYECKOM
OBJIAJICHUH HABBIKAMH IE€PEBOJA CIELHAIM3UPOBAHHON HHOCTPAHHOU JUTEPATYpPHI
[0 HAIPABJICHUIO MOATOTOBKH JIJIsl aKTUBHOTO HCIIOIB30BaHMs B MPO(ECCHOHATHLHON
NEeSATENBHOCTH.

JlaHHBIE METOJUYECKME MAaTEPHAIIbl BKIIFOUAIOT B CE0sI MPAKTHUECKHUE 3aJaHUsl.

Jlekcuyecknili cocTaB Marepuanga METOAUYECKMX YKA3aHUM COOTBETCTBYET
COBPEMEHHOMY COCTOSIHAIO AHIVIMMCKOTO sI3bIKa M BKJIIOYaeT B ce0s
o01IenpopecCHOHANbHYIO0 HAyYHO-TEXHUUECKYIO0 TEPMUHOJIOTHIO.

PA3JIEJ 1

OCOBEHHOCTHU AHI'JIMMCKOI'O HAYYHO-TEXHUYECKOI'O
TEKCTA. OCOBEHHOCTH ITIEPEBOJA HAYYHO-TEXHUYECKOI'O
TEKCTA

3ajanns U ynpakHeHusi mo Temam:_l. XapakTep aHIIUMKWCKOrO0 HAY4YHO-
TEXHUYECKOTO TekcTa. HaydyHo-TeXHHYeCcKasi TEPMHHOJOTHSI W JIEKCHYECKHE
0COOCHHOCTH HAYYHO-TEXHHMYECKOTO0 TeKcTa. 2. I'paMMaTHYecKHE OCOOEHHOCTH
HAYyYHO-TEXHHYECKOro TeKcTa. 3. (OcoOEHHOCTH PYCCKOIO0 HAy4YHOI'O TEKCTa.
4. OcoOEHHOCTH aHINIMHMCKOTO TEKCTA, YYXKIbIE PYCCKOMY sA3bIKY. CTuimcTHUecKas

agalrtTanmus.

1. TlpoananusupyiiTe TepMHHOJIOTHYeCKHH cocTaB Tekcrta «Computer
Sciencex:

a) HaJIUTEe MIPOCTHIE U CIIOKHBIE TEPMUHBI,

0) ompenenure, K KaKOMy THUITYy (CIIOBOCOuY€TaHUs, aOOpeBUaTypa, CIOTOBBIC
COKpAIIICHUs], TUTEPHBIC TEPMUHBI) OTHOCATCS HAMJICHHBIE CIIOKHBIE TEPMUHBI;

B) HA30BUTE CMOCOOBI mMepeBojia (TpaHCIUTEpAllUd, TOUCK SKBUBAJICHTA,
KaJIbKUPOBAHKE, ONTUCATENIbHBIN MEPEBO/T) HAWIEHHBIX TEPMUHOB.

2. Tlpoanaau3upyiiTe rpaMMaTH4ecKYK CTPYKTYpy Tekcra «Computer
Sciencey:

a) BBIMTAIIINTE U3 TEKCTA U MTEPEBEINUTE

- aTpUOYTHUBHBIE TPYIIIBI B POJIH OTIPECIICHUH,

- TJIarOJIBI-OTIePaTOPHI,

- IEPEXO/IHBIE TTIAr0JIbl B HETIEPEXOHOM (hopMe C TACCUBHBIM 3HAUCHUEM,

- DJUTUIITUYECKUE KOHCTPYKIIUH,

- IPUYNMHHO-CIIEJICTBEHHBIE COIO3bI U IOTUYECKUE CBSI3KHU;

0) HallIMTE B TEKCTE U MEPEBEIUTE:

- TIPEJIOKHO-UMEHHBIE COYETAHUS, KOTOPhIE MOKHO 3aMEHUTh HAPEUUSIMU;

- OTIJIaroJibHBIE MpUJIaraTelbHbIE C MPEeAJIOraMu, KOTOPble MOKHO 3aMEHHTh
TJIaroJIaMu.

3. IlepeBeauTe MOTHOCTHIO TekeT «Computer Sciencey.
COMPUTER SCIENCE
General definition
Computer science is the scientific and practical approach to computation and
its applications. It is the systematic study of the feasibility, structure, expression, and

mechanization of the methodical processes (or algorithms) that underlie the
acquisition, representation, processing, storage, communication of, and access to

4

information, whether such information is encoded in bits and bytes in a computer
memory or transcribed engines and protein structures in a human cell. A computer
scientist specializes in the theory of computation and the design of computational
systems.

Its subfields can be divided into a variety of theoretical and practical
disciplines. Some fields, such as computational complexity theory (which explores
the fundamental properties of computational problems), are highly abstract, while
fields such as computer graphics emphasize real-world visual applications. Still other
fields focus on the challenges in implementing computation. For example,
programming language theory considers various approaches to the description of
computation, whilst the study of computer programming itself investigates various
aspects of the use of programming language and complex systems. Human-computer
interaction considers the challenges in making computers and computations useful,
usable, and universally accessible to humans.

History of computer science

The earliest foundations of what would become computer science predate the
invention of the modern digital computer. Machines for calculating fixed numerical
tasks such as the abacus have existed since antiquity but they only supported the
human mind, aiding in computations as complex as multiplication and division.

Blaise Pascal designed and constructed the first working mechanical calculator,
Pascal’s calculator, in 1642. Two hundred years later, Thomas de Colmar launched
the mechanical calculator industry when he released his simplified arithmometer,
which was the first calculating machine strong enough and reliable enough to be used
daily in an office environment.

Charles Babbage started the design of the first automatic mechanical
calculator, his difference engine, in 1822, which eventually gave him the idea of the
first programmable mechanical calculator, his «Analytical Engine». He started
developing this machine in 1834 and «in less than two years he had sketched out
many of the salient features of the modern computer. A crucial step was the adoption
of a punched card system derived from the Jacquard loomy» making it infinitely
programmable.

In 1843, during the translation of a French article on the analytical engine, Ada
Lovelace wrote, in one of the many notes she included, an algorithm to compute the
Bernoulli numbers, which is considered to be the first computer program. Around
1885, Herman Hollerith invented the tabulator which used punched cards to process
statistical information; eventually his company became part of IBM. In 1937, one
hundred years after Babbage’s impossible dream, Howard Aiken convinced IBM,
which was making all kinds of punched card equipment and was also in the calculator
business to develop his giant programmable calculator, the ASCC/Harvard Mark I,
based on Babbage’s analytical engine, which itself used cards and a central
computing unit. When the machine was finished, some hailed it as «Babbage’s dream
come truey.

During the 1940s, as new and more powerful computing machines were
developed, the term «computer» came to refer to the machines rather than their
human predecessors. As it became clear that computers could be used for more than
just mathematical calculations, the field of computer science broadened to study
computation in general. Computer science began to be established as a distinct
academic discipline in the 1950s and early 1960s. The world’s first computer science
degree program, the Cambridge Diploma in Computer Science, began at the
University of Cambridge Computer Laboratory in 1953. The first computer science
degree program in the United States was formed at Purdue University in 1962. Since
practical computers became available, many applications of computing have become
distinct areas of study in their own right.

Although many initially believed it was impossible that computers themselves
could actually be a scientific field of study, in the late fifties it gradually became
accepted among the greater academic population. It is the now well-known IBM
brand that formed part of the computer science revolution during this time. IBM
(short for International Business Machines) released the IBM 704 and later the IBM
709 computers, which were widely used during the exploration period of such
devices. «Still, working with the IBM was frustrating ... if you had misplaced as
much as one letter in one instruction, the program would crash, and you would have
to start the whole process over again». During the late 1950s, the computer science
discipline was very much in its developmental stages, and such issues were
commonplace.

Time has seen significant improvements in the usability and effectiveness of
computing technology. Modern society has seen a significant shift in the users of
computer technology, from usage only by experts and professionals, to a near-
ubiquitous user base. Initially, computers were quite costly, and some degree of
human aid was needed for efficient use — in part from professional computer
operators. As computer adoption became more widespread and affordable, less
human assistance was needed for common usage.

4. Haiigute B Tekcre «Computer programmingy:

a) Ju4YHble (QOpPMBI TJlaroja, KOTOpbIE MEPEBOJATCS HA PYCCKUM S3bIK
O€3IMYHBIMU WJIM HEONPEEIIEHHO-IMYHBIMU 000pOTaMU;

0) r1arosisl B OyaylieM BpeMEeHH, YIOTpeOisieMble JIJIsi BhIpaKeHUs OOBIYHOTO
JIeNCTBUS,

B) IACCHUBHBIE OOOPOTHI, KOTOpPHIE NPHU MEPEBOJE HA PYCCKUU SI3bIK OyayT
3aMEHATHCA KOHCTPYKIHUSMH C TJIaroJlaMi B aKTUBHOM 3aJI0Te.

5. Haiizure B Tekcre «Computer programming»:

a) COKpallleHus, HEyOTpeOUTEIbHbIE B PYCCKOM SI3bIKE, U paciinpynTe ux;

0) cioBa M BBIpAXKEHUS, UYXKJbIe PYCCKOMY SI3bIKYy; MOJ0EpUTE aHAJIOTH Ha
PYCCKOM SI3BIKE JUISl UX 3AMEHBI;

B) IJIaroJibl, KOTOpPbIE NMPHU MepeBoie OYIyT 3aMEHSTHCS CYIIECTBUTEIbHBIMHU.

6. IlepeBenuTte TekeT «Computer programmingy.
COMPUTER PROGRAMMING

Computer programming is the comprehensive process that leads from an
original formulation of a computing problem to executable programs. It involves
activities such as analysis, understanding, and generically solving such problems
resulting in an algorithm, verification of requirements of the algorithm including its
correctness and its resource consumption, implementation (or coding) of the
algorithm in a target programming language, testing, debugging, and maintaining the
source code, implementation of the build system and management of derived
artefacts such as machine code of computer programs. The algorithm is often only
represented in human-parseable form and reasoned about using logic. Source code is
written in one or more programming languages (such as C++, C#, Java, Python,
Smalltalk, JavaScript,etc.). The purpose of programming is to find a sequence of
instructions that will automate performing a specific task or solve a given problem.
The process of programming thus often requires expertise in many different subjects,
including knowledge of the application domain, specialized algorithms and formal
logic.

Within software engineering, programming is regarded as one phase in a
software development process.

FORTRAN — the first high level programming language — was invented in
1954 and it was also first to have a functional implementation, as opposed to just a
design on paper. (A high-level language is, in very general terms, any programming
language that allows the programmer to write programs in terms that are more
abstract than assembly language instructions, i.e. at a level of abstraction «higher»
than that of an assembly language.) It allowed programmers to specify calculations
by entering a formula directly (e.g. Y = X*2 + 5*X + 9). The program text, or
«sourcey, is converted into machine instructions using a special program called a
compiler, which translates the FORTRAN program into machine language. In fact,
the name FORTRAN stands for «Formula Translation». Many other languages were
developed, including some for commercial programming, such as COBOL. Programs
were mostly still entered using punched cards or paper tape. By the late 1960s, data
storage devices and computer terminals became inexpensive enough that programs
could be created by typing directly into the computers. Text editors were developed
that allowed changes and corrections to be made much more easily than with punched
cards.

As time has progressed, computers have made giant leaps in the area of
processing power. This has brought about newer programming languages that are
more abstracted from the underlying hardware. Popular programming languages of
the modern era include ActionScript, C++, C#, Haskell, HTML with PHP, Java,
JavaScript, Objective-C, Perl, Python, Ruby, Smalltalk, SQL, Visual Basic, and
dozens more. Although these high-level languages usually incur greater overhead, the
increase in speed of modern computers has made the use of these languages much

7

more practical than in the past. These increasingly abstracted languages typically are
easier to learn and allow the programmer to develop applications much more
efficiently and with less source code. However, high-level languages are still
impractical for a few programs, such as those where low-level hardware control is
necessary or where maximum processing speed is vital. Computer programming has
become a popular career in the developed world, particularly in the United States,
Europe, and Japan. Due to the high labor cost of programmers in these countries,
some forms of programming have been increasingly subject to offshore outsourcing
(importing software and services from other countries, usually at a lower wage),
making programming career decisions in developed countries more complicated,
while increasing economic opportunities for programmers in less developed areas,
particularly China and India.

There is an on-going debate on the extent to which the writing of programs is
an art form, a craft, or an engineering discipline. In general, good programming is
considered to be the measured application of all three, with the goal of producing an
efficient and evolvable software solution (the criteria for «efficient» and «evolvable»
vary considerably). The discipline differs from many other technical professions in
that programmers, in general, do not need to be licensed or pass any standardized (or
governmentally regulated) certification tests in order to call themselves
«programmers» or even «software engineers». Because the discipline covers many
areas, which may or may not include critical applications, it is debatable whether
licensing is required for the profession as a whole. In most cases, the discipline is
self-governed by the entities which require the programming, and sometimes very
strict environments are defined (e.g. United States Air Force use of AdaCore and
security clearance). However, representing oneself as a «Professional Software
Engineer» without a license from an accredited institution is illegal in many parts of
the world.

Another on-going debate is the extent to which the programming language
used in writing computer programs affects the form that the final program takes. This
debate is analogous to that surrounding the Sapir-Whorf hypothesis in linguistics and
cognitive science, which postulates that a particular spoken language’s nature
influences the habitual thought of its speakers. Different language patterns yield
different patterns of thought. This idea challenges the possibility of representing the
world perfectly with language, because it acknowledges that the mechanisms of any
language condition the thoughts of its speaker community.

PA3JIEJ 2

BU/Ibl TEXHUYECKOI'O IIEPEBO/IA.
HEPEBO/ ITATEHTOB

3amanusi u ynpakHenusi mo temam: 1. [lodHBIM NHCHMEHHBIA MEPEBOJL.
2. PedbeparuBHblil iepeBo1. 3. AHHOTAIMOHHBIN epeBo. 4. IlepeBo1 TaTEHTOB.

1. BbImoJiHHTE TOJIHBII NHCHMEHHBI mepeBoJ Tekcra «Databasesy,
NMOJIb3YSICh TMO3TANHOMW TeXHOoJIOrHell mnepeBoaa (CM. CTp. y4eOHOTO ITOCOOMS
«VHOCTpaHHBIN SI3bIK IS PUKIIATHON HHPOPMATHKN).

2. Bommouinute pedepaTuBHbIii mepeBon Texkcra «Databasesy», moab3ysich
NMOITANHON TeXHoJIoruei mepeBoaa (cM. cTp. yuyeOHOro nocodbust «HoCTpaHHBIM
A3BIK JJI IPUKIATHOW UH(POPMATUKI).

3. BoinostHUTE aHHOTAIHOHHBIH TepeBo] TekcTa «Databasesy.
DATABASES
Overview

A database is an organized collection of data. The data are typically organized
to model relevant aspects of reality in a way that supports processes requiring this
information. Example: modeling the availability of rooms in hotels in a way that
supports finding a hotel with vacancies.

Database management systems (DBMSs) are specially designed applications
that interact with the user, other applications, and the database itself to capture and
analyze data. A general-purpose database management system (DBMS) is a software
system designed to allow the definition, creation, querying, update, and

9

administration of databases. Well-known DBMSs include MySQL, PostgreSQL,
SQL.ite, Microsoft SQL Server, Microsoft Access, Oracle, SAP, dBASE, FoxPro,
IBM DB2, LibreOffice Base and FileMaker Pro. A database is not generally portable
across different DBMS, but different DBMSs can inter-operate by using standards
such as SQL and ODBC or JDBC to allow a single application to work with more
than one database.

Formally, the term «database» refers to the data itself and supporting data
structures. Databases are created to operate large quantities of information by
Inputting, storing, retrieving, and managing that information. Databases are set up so
that one set of software programs provides all users with access to all the data.

A «database management system» (DBMS) is a suite of computer software
providing the interface between users and a database or databases. Because they are
so closely related, the term «database» when used casually often refers to both a
DBMS and the data it manipulates.

Outside the world of professional information technology, the term «database»
Is sometimes used casually to refer to any collection of data (perhaps a spreadsheet,
maybe even a card index). This article is concerned only with databases where the
size and usage requirements necessitate use of a database management system.

The interactions catered for by most existing DBMS fall into four main groups:

. Data definition. Defining new data structures for a database, removing data
structures from the database, modifying the structure of existing data.

« Update. Inserting, modifying, and deleting data.

« Retrieval. Obtaining information either for end-user queries and reports or for
processing by applications.

« Administration. Registering and monitoring users, enforcing data security,
monitoring performance, maintaining data integrity, dealing with concurrency
control, and recovering information if the system fails.

A DBMS is responsible for maintaining the integrity and security of stored
data, and for recovering information if the system fails.

Both a database and its DBMS conform to the principles of a particular
database model. «Database systemy refers collectively to the database model,
database management system, and database.

Physically, database servers are dedicated computers that hold the actual
databases and run only the DBMS and related software. Database servers are usually
multiprocessor computers, with generous memory and RAID disk arrays used for
stable storage. RAID is used for recovery of data if any of the disks fails. Hardware
database accelerators, connected to one or more servers via a high-speed channel, are
also used in large volume transaction processing environments. DBMSs are found at
the heart of most database applications. DBMSs may be built around a custom
multitasking kernel with built-in networking support, but modern DBMSs typically
rely on a standard operating system to provide these functions. Since DBMSs
comprise a significant economical market, computer and storage vendors often take
into account DBMS requirements in their own development plans.

10

http://en.wikipedia.org/wiki/Interoperation
http://en.wikipedia.org/wiki/Economy

Databases and DBMSs can be categorized according to the database model(s)
that they support (such as relational or XML), the type(s) of computer they run on
(from a server cluster to a mobile phone), the query language(s) used to access the
database (such as SQL or XQuery), and their internal engineering, which affects
performance, scalability, resilience, and security.

Database design

The first task of a database designer is to produce a conceptual data model that
reflects the structure of the information to be held in the database. A common
approach to this is to develop an entity-relationship model, often with the aid of
drawing tools. Another popular approach is the Unified Modeling Language. A
successful data model will accurately reflect the possible state of the external world
being modeled: for example, if people can have more than one phone number, it will
allow this information to be captured. Designing a good conceptual data model
requires a good understanding of the application domain; it typically involves asking
deep questions about the things of interest to an organization, like «can a customer
also be a supplier?», or «if a product is sold with two different forms of packaging,
are those the same product or different products?», or «if a plane flies from New
York to Dubai via Frankfurt, is that one flight or two (or maybe even three)?». The
answers to these questions establish definitions of the terminology used for entities
(customers, products, flights, flight segments) and their relationships and attributes.

Producing the conceptual data model sometimes involves input from business
processes, or the analysis of workflow in the organization. This can help to establish
what information is needed in the database, and what can be left out. For example, it
can help when deciding whether the database needs to hold historic data as well as
current data.

Having produced a conceptual data model that users are happy with, the next
stage is to translate this into a schema that implements the relevant data structures
within the database. This process is often called logical database design, and the
output is a logical data model expressed in the form of a schema. Whereas the
conceptual data model is (in theory at least) independent of the choice of database
technology, the logical data model will be expressed in terms of a particular database
model supported by the chosen DBMS.

The most popular database model for general-purpose databases is the
relational model, or more precisely, the relational model as represented by the SQL
language. The process of creating a logical database design using this model uses a
methodical approach known as normalization. The goal of normalization is to ensure
that each elementary «fact» is only recorded in one place, so that insertions, updates,
and deletions automatically maintain consistency.

The final stage of database design is to make the decisions that affect
performance, scalability, recovery, security, and the like. This is often called
«physical database design». A key goal during this stage is data independence,
meaning that the decisions made for performance optimization purposes should be

11

invisible to end-users and applications. Physical design is driven mainly by
performance requirements, and requires a good knowledge of the expected workload
and access patterns, and a deep understanding of the features offered by the chosen
DBMS.

Another aspect of physical database design is security. It involves both
defining access control to database objects as well as defining security levels and
methods for the data itself.

Database security

Database security deals with all various aspects of protecting the database
content, its owners, and its users. It ranges from protection from intentional
unauthorized database uses to unintentional database accesses by unauthorized
entities (e.g., a person or a computer program).

Database access control deals with controlling who (a person or a certain
computer program) is allowed to access what information in the database. The
information may comprise specific database objects (e.g., record types, specific
records, data structures), certain computations over certain objects (e.g., query types,
or specific queries), or utilizing specific access paths to the former (e.g., using
specific indexes or other data structures to access information). Database access
controls are set by special authorized (by the database owner) personnel that uses
dedicated protected security DBMS interfaces.

This may be managed directly on an individual basis, or by the assignment of
individuals and privileges to groups, or (in the most elaborate models) through the
assignment of individuals and groups to roles which are then granted entitlements.
Data security prevents unauthorized users from viewing or updating the database.
Using passwords, users are allowed access to the entire database or subsets of it
called «subschemay. For example, an employee database can contain all the data
about an individual employee, but one group of users may be authorized to view only
payroll data, while others are allowed access to only work history and medical data.
If the DBMS provides a way to interactively enter and update the database, as well as
interrogate it, this capability allows for managing personal databases.

Data security in general deals with protecting specific chunks of data, both
physically, or the interpretation of them, or parts of them to meaningful information.

Change and access logging records that accessed which attributes, what was
changed, and when it was changed. Logging services allow for a forensic database
audit later by keeping a record of access occurrences and changes. Sometimes
application-level code is used to record changes rather than leaving this to the
database. Monitoring can be set up to attempt to detect security breaches.

12

4. TlepeBeaute (¢parMeHT TeKCTa MNaTeHTAa, I[OJb3YACh Tabnuien
npuBeNEHHON Ha CTp. yueOHoro mocobus «HOCTpaHHBIN S3BIK JUIS TPUKIATHON
UH(POPMATUKIY.

System, method, and computer program product
for comparing text portions by reference to index information

US 6014663 A
https://www.google.com/patents/US6014663

Abstract

A system and method for assisting in the preparation of a document, and for
analyzing a document, such as a patent or patent application, are described herein.
The system aids a user to verify that terms in a patent application are being used
consistently. The system also facilitates editing of the patent application so as to
achieve terminology consistency. The system operates by allowing a user to select a
document containing a patent application. The user then selects the specification
portion of the patent application, and also selects the claims portion of the patent
application. The system indexes the specification portion and the claims portion to
thereby generate a merged index table. The system analyzes the merged index table
to identify terms in the claims portion that are not present in the specification portion,
and then displays these terms (called claim terms). A user can then edit the patent
application so as to properly describe these terms in the specification,

This application is a continuation of Ser. No. 08/590,082 filed Jan. 23, 1996
now U.S. Pat. No. 5,754,840.

Background of the invention

1. Field of the Invention. This present invention relates generally to
developing, maintaining, and analyzing documents.

2. Related Art. When drafting certain types of documents, the choice of
terminology can have significant ramifications. For example, in the patent field, the
use of consistent terminology between the patent specification and the claims is
extremely important. Inconsistent terminology could result in ambiguity, vagueness,
and indefiniteness as to the subject matter being described and claimed. Such
ambiguity, vagueness, and indefiniteness could negatively impact the prosecution of

13

https://www.google.com/patents/US6014663

the patent application, and the validity and enforcement of any patent that may issue
from the patent application.

The need for consistent terminology is not limited to patent documents. Other
types of documents having stringent requirements of consistent terminology include
legal documents (such as contracts and wills), business documents,
technical/scientific manuscripts, medical documents, computer documents, etc.

Accordingly, a need exists for a system and method for enabling a user to
easily determine whether consistent terminology exists in a document, and for
enabling the user to easily modify the document so as to achieve consistent
terminology.

Summary of the invention

The present invention is directed to a system and method for assisting in the
preparation of a document, such as a patent application. The present invention aids a
user to verify that terms in a patent application are being used consistently. The
present invention also facilitates editing of the patent application so as to achieve
terminology consistency. It can also be used to verify terminology consistency in an
already existing document such as an issued patent.

The present invention operates by allowing a user to select a document

containing a patent application or an issued patent. The user then selects the
specification portion of the patent application, and also selects the claims portion of
the patent application. The invention indexes the specification portion and the claims
portion to thereby generate a merged index table. The invention analyzes the merged
index table to identify terms in the claims portion that are not present in the
specification portion, and then displays these terms (called claim terms).
Further features and advantages of the invention, as well as the structure and
operation of various embodiments of the invention, are described in detail below with
reference to the accompanying drawings. In the drawings, like reference numbers
generally indicate identical, functionally similar, and/or structurally similar elements.
The drawing in which an element first appears is indicated by the leftmost digit(s) in
the corresponding reference number.

Claims

What is claimed is:

1. A method for comparing text portions, comprising the steps of: (1) indexing
a first selected non-predefined text portion to generate first index information; (2)
indexing a second selected non-predefined text portion to generate second index
information; and (3) comparing said first and second index information generated in
steps (1) and (2).

2. The method of claim 1, further comprising the step of: (4) identifying
differences between said first and second text portions by reference to results of said
comparison performed in step (3).

14

3. The method of claim 1, further comprising the step of: (4) identifying
similarities between said first and second text portions by reference to results of said
comparison performed in step (3).

4. The method of claim 1, wherein step (1) results in generating a first index
table, and step (2) results in generating a second index table.

5. The method of claim 4, further comprising the step of: merging said first and
second index tables to thereby generate a merged index table.

6. The method of claim 5, wherein step (3) comprises the step of: determining
by reference to said merged index table terms that are present in said second text
portion, but not present in said first text portion.

7. The method of claim 4, wherein said first text portion and said second text
portion are from the same document.

8. A system for comparing text portions, comprising: first text portion indexing
means for indexing a first selected non-predefined text portion to generate first index
information; second text portion indexing means for indexing a second selected non-
predefined text portion to generate second index information; and index comparing
means for comparing said first and second index information generated by said first
and second text portion indexing means.

9. The system of claim 8, further comprising: means for identifying differences
between said first and second text portions by reference to results of said comparison
performed by said index comparing means.

10. The system of claim 8, further comprising: means for identifying
similarities between said first and second text portions by reference to results of said
comparison performed by said index comparing means.

11. The system of claim 8, wherein said first text portion indexing means
generates a first index table, and said second text portion indexing means generates a
second index table.

12. The system of claim 11, further comprising: means for merging said first
and second index tables to thereby generate a merged index table.

13. The system of claim 12, wherein said index comparing means comprises:
means for determining by reference to said merged index table terms that are present
in said second text portion, but not present in said first text portion.

14. The system of claim 8, wherein said first text portion and said second text
portion are from the same document.

15. A computer program product having control logic stored therein, said
control logic, when executed, enabling a computer to compare text portions, said
control logic comprising: first text portion indexing means for enabling the computer
to index a first selected non-predefined text portion to generate first index
information; second text portion indexing means for enabling the computer to index a
second selected non-predefined text portion to generate second index information;
and index comparing means for enabling the computer to compare said first and
second index information generated by said first and second text portion indexing
means.

15

16. The computer program product of claim 15, said control logic further
comprising: means for enabling the computer to identify differences between said
first and second text portions by reference to results of said comparison performed by
said index comparing means.

17. The computer program product of claim 15, said control logic further
comprising: means for enabling the computer to identify similarities between said
first and second text portions by reference to results of said comparison performed by
said index comparing means.

18. The computer program product of claim 15, wherein said first text portion
indexing means enables the computer to generate a first index table, and said second
text portion indexing means enables the computer to generate a second index table.

19. The computer program product of claim 18, said control logic further
comprising: means for enabling the computer to merge said first and second index
tables to thereby generate a merged index table.

20. The computer program product of claim 19, wherein said index comparing
means comprises: means for enabling the computer to determine by reference to said
merged index table terms that are present in said second text portion, but not present
in said first text portion.

21. The computer program product of claim 15, wherein said first text portion
and said second text portion are from the same document.

Brief description of the figures

The present invention will be described with reference to the accompanying
drawings, wherein:

FIG. 1 is a block diagram of a preferred computer system of the present
invention;

FIG. 2 is a block diagram of a document development and maintenance system
according to a preferred embodiment of the present invention;

FIGS. 3, 4, 5, 6, 11, and 29 are screen shots generated by a graphical user
interface of the present invention;

FIGS. 7,12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, and 28 are flowcharts
depicting the preferred operation of the present invention;

FIGS. 8, 9, 10, 14, and 24 are preferred index tables according to the present
invention; and

FIG. 16 depicts a document used by the present invention.

16

