Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Кафедра математики

Составители Е.Н. Грибанов А.В. Чередниченко

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Методические материалы к практическим занятиям и самостоятельной работе

для студентов специальности СПО 09.02.07 Информационные системы и программирование

Рекомендовано цикловой методической комиссией математических и естественнонаучных дисциплин в качестве электронного издания для использования в образовательном процессе

Рецензенты Николаева Е. А., кандидат физико-математических наук, доцент кафедры математики ФГБОУ ВО «Кузбасский государственный технический университет имени Т. Ф. Горбачева» Ощепкова Е. А., председатель цикловой методической комиссии математических и естественнонаучных дисциплин

Грибанов Евгений Николаевич Чередниченко Алла Валерьевна

Теория вероятностей и математическая статистика: методические материалы к практическим занятиям и самостоятельной работе [Электронный ресурс] для обучающихся специальности СПО 09.02.07 Информационные системы и программирование, очной формы обучения / сост. Е. Н. Грибанов, А. В. Чередниченко; КузГТУ. – Электрон. издан. – Кемерово, 2018.

Приведены методические материалы к практическим занятиям и самостоятельной работе по дисциплине «**Теория вероятностей и математическая статистика**», позволяющие закрепить знания, полученные в ходе аудиторных занятий; способствующие закреплению теоретических положений; развитию навыков по их практическому применению.

©КузГТУ, 2018 ©Грибанов Е.Н., Чередниченко А.В, составление, 2018

Оглавление

.4
.4
й .5
.5
.5
.6
.8
.8
10
11
13
14
: 14
15
16
1 16
18
19
19
20

Практическое занятие 7. Вычисление числовых характе	ристик
выборки. Точечные и интервальные оценки	21
Самостоятельная работа по теме 5	22
Критерии оценки практической работы	23
Список источников	24

Пояснительная записка

Общие положения

Методические материалы разработаны в соответствии с рабочей программой по дисциплине «Теория вероятностей и математическая статистика».

Цель работы — помочь студентам при освоении дисциплины «Теория вероятностей и математическая статистика», при подготовке к практическим занятиям и организация самостоятельной работы.

В методических материалах приведены задания для решения на практических занятиях и задания для самостоятельной работы.

Студенты обязаны в объеме часов, отпущенных на самостоятельную работу при изучении данной дисциплины, выполнять следующие виды самостоятельной работы:

- разбор и изучение теоретического материала по учебникам, пособиям и конспектам лекций;
- решение заданий по темам практических занятий;
- подготовка к промежуточному контролю.

Практические занятия и самостоятельная работа студентов очной формы обучения

Тема 1. Элементы комбинаторики

Введение в теорию вероятностей. Упорядоченные выборки (размещения). Перестановки. Неупорядоченные выборки (сочетания)

Практическое занятие 1. Подсчет числа комбинаций

Цель: изучить основные понятия комбинаторики.

Продолжительность работы: 90 мин.

- 1.1. Сколькими способами можно расставить 7 книг на книжной полке?
- 1.2. Сколько шестизначных чисел можно составить из цифр 0, 1, 2, 3, 4, 5 так, чтобы цифры в числе не повторялись?
- 1.3. Сколько шестизначных чисел, кратных пяти, можно составить из цифр 1, 2, 3, 4, 5, 6 при условии, что цифры в числе не повторяются?
- 1.4. Для проведения экзамена по математике создается комиссия из двух человек. Сколько различных комиссий можно организовать, если имеется пять преподавателей?
- 1.5. Сколькими способами можно группу из 15 учащихся разделить на две группы так, чтобы в одной группе было 4, а в другой 11 человек?
- 1.6. Из 20 студентов надо выбрать двух дежурных. Сколькими способами это можно сделать?
- 1.7. На пяти карточках написаны числа 1, 2, 3, 4, 5. Сколько различных трехзначных чисел можно из них составить?
- 1.8. Группа учащихся изучает 7 учебных дисциплин. Сколькими способами можно составить расписание занятий в понедельник, если в этот день недели должно быть 4 различных урока?
- 1.9. Для проведения экзамена по математике создается комиссия из двух человек, причем один из преподавателей должен быть назначен старшим. Сколько различных комиссий можно организовать, если имеется пять преподавателей?

- 1.10. Сколько различных двузначных чисел можно образовать из цифр 1, 2, 3, 4 при условии, что в каждом числе нет одинаковых цифр?
- 1.11. Имеется шестизначная кодовая комбинация, состоящая из трех цифр 1, 3, 5, в которой цифра 1 встречается один раз, цифра 3 два раза и цифра 5 три раза. Сколько существует комбинаций таких наборов?
- 1.12. Сколькими способами можно расставить белые фигуры (2 ладьи, 2 коня, 2 слона, ферзь и король) на первой линии шахматной доски?
- 1.13. В почтовом отделении имеются открытки 3 видов. Сколькими способами можно купить набор из 5 открыток?
- 1.14. В хлебном отделе имеются булки белого и черного хлеба. Сколькими способами можно купить 6 булок хлеба?
- 1.15. Сколько четырехбуквенных слов можно составить из букв М и А?
- 1.16. Вдоль дороги стоят 6 светофоров. Сколько может быть различных комбинаций их сигналов, если каждый светофор имеет 3 состояния: «красный», «желтый», «зеленый»?

- 1.17. У мамы 2 яблока, 3 груши и 4 апельсина. Каждый день в течение девяти дней она выдает сыну по одному фрукту. Сколько может быть вариантов такой выдачи?
- 1.18. Сколько шахматистов участвовало в турнире, если каждый участник сыграл с каждым по одной партии, а партий было сыграно в 10 раз больше числа участников.
- 1.19. Имеются в неограниченном количестве палочки длиной 5, 6, 7, 8, 9, 10см. Сколько различных треугольников можно из них составить?
- 1.20. Из 10 роз и 8 лилий нужно составить букет так, чтобы в нем было 2 розы и 3 лилии. Сколькими способами это можно сделать?
- 1.21. Собрание из 40 человек избирает председателя, секретаря и трех членов редакционной комиссии. Сколько существует возможностей выбора этих пяти человек?

- 1.22. Сколькими способами можно расставить 8 томов энциклопедии на книжной полке так, чтобы первый и второй тома:
 - а). стояли рядом;
 - б) не стояли рядом?
- 1.23. Даны две параллельные прямые. На одной из них имеется 10 точек, а на другой 20. Сколько существует треугольников с вершинами в данных точках?
- 1.24. На школьном вечере присутствуют 12 девушек и 15 юношей. Сколькими способами можно выбрать из них 4 пары для танца?
- 1.25. Хоккейная команда состоит из 2 вратарей, 7 защитников и 10 нападающих. Сколькими способами тренер может образовать стартовую шестерку, состоящую из вратаря, двух защитников и трех нападающих?
- 1.26. Сколькими способами можно расставить на полке 7 различных книг, чтобы определенные три книги стояли рядом? Стояли не рядом?
- 1.27. В урне 12 белых и 8 черных шаров. Сколькими способами можно выбрать 5 шаров, чтобы среди них было:
 - а) 5 черных;
 - б) 3 белых и 2 черных;
 - в) 5 шаров одного цвета;
 - г) 4 шара одного цвета?
- 1.28. Сколько слов можно получить, переставляя буквы в слове: «ГОРА», «ИНСТИТУТ»?
- 1.29. Из 4 первокурсников, 5 второкурсников и 6 третьекурсников надо выбрать три студента на конференцию. Сколькими способами можно осуществить этот выбор, если среди выбранных должны быть студенты разных курсов?
- 1.30. Из 10 мальчиков и 10 девочек спортивного класса для участия в эстафете надо составить три команды, каждая из которых состоит из мальчика и девочек. Сколькими способами это можно сделать?
- 1.31. Сколькими способами можно распределить 15 выпускников по трем районам, если в одном из них имеется 8, в другом 5 и в третьем 2 вакантных места?

Тема 2. Основы теории вероятностей

Случайные события. Классическое определение вероятностей. Формула полной вероятности. Формула Байеса. Вычисление вероятностей сложных событий. Схемы Бернулли. Формула Бернулли. Вычисление вероятностей событий в схеме Бернулли

Практическое занятие 2. Вычисление вероятностей с использованием формул комбинаторики.

Цель: изучить основные методы вычисления вероятностей простых событий.

Продолжительность работы: 90 мин.

- 2.1. При стрельбе из винтовки вероятность попадания в цель равна 0,75. Найти число попаданий, если всего было произведено 140 выстрелов.
- 2.2. В лотерее разыгрывается тысяча билетов. Среди них один выигрыш в 50 рублей, пять выигрышей в 20 рублей, двадцать выигрышей по 10 рублей и пятьдесят выигрышей по 5 рублей. Некто покупает один билет. Найти вероятность:
 - а) выиграть не менее 10 рублей;
 - б) какого-либо выигрыша.
- 2.3. Бросаются одновременно две монеты. Какова вероятность выпадения герба на обеих монетах?
- 2.4. Брошена игральная кость. Найти вероятность того, что выпадает четное число очков.
- 2.5. Участники жеребьевки тянут из ящика жетоны с номерами от 1 до 100. Найти вероятность того, что номер первого, наудачу извлеченного жетона, не содержит цифры 5.
- 2.6. Куб, все грани которого окрашены, распилен на тысячу кубиков одинакового размера, которые затем тщательно перемешаны. Найти вероятность того, что наудачу излеченный кубик будет иметь окрашенных граней: а) одну, б) две, в) три.
- 2.7. В ящике содержится 100 перемешанных жетонов, пронумерованных целыми числами от 1 до 100. Найти вероятность того, что извлеченный наудачу жетон имеет номер, который не делится ни на 2, ни на 3.

- 2.8. В урне \boldsymbol{a} белых и \boldsymbol{e} черных шаров. Из урны вынимают один шар и откладывают в сторону. Этот шар оказался белым. После этого из урны берут еще один шар. Найти вероятность того, что этот шар тоже будет белым.
- 2.9. На 20 одинаковых жетонах написано 20 двухзначных чисел от 11 до 30. Жетоны помещены в пакет и тщательно перемещаны. Какова вероятность вынуть жетон с номером, кратным 4 или 7?
- 2.10. В мешке смешаны нити 5 сортов; 30 % белых, 40 % черных, 15% красных, 10 % зеленых, 5% голубых. Определить вероятность того, что наудачу взятая нить будет цветной.
- 2.11. В команде спортсменов 6 бегунов на короткие дистанции, 3 бегуна на длинные, 5 метателей, 7 борцов и 4 боксера. Определить вероятность того, что наудачу вызванный спортсмен будет легкоатлетом.
- 2.12. В пачке имеется 100 жетонов, занумерованных числами от 1до 100. Определить вероятность того, что номер наудачу взятого жетона будет кратным 25 или 30.
- 2.13. Игральную кость бросают два раза. Найти вероятность того, что A выпадет одинаковое число очков; B сумма выпавших очков равна 8; C сумма выпавших очков четная; \mathcal{A} число очков, выпавших при первом броске, больше числа очков, выпавших при втором броске; E сумма выпавших очков равна пяти, а произведение четырем.
- 2.14. Из букв разрезанной азбуки составлено слово «мел». Ребенок, не умеющий читать, рассыпал эти буквы и затем собрал их в произвольном порядке. Найти вероятность того, что у него снова получилось это же слово.
- 2.15. Из букв разрезанной азбуки составлено слово «рама». Ребенок, не умеющий читать, рассыпал эти буквы и затем собрал их в произвольном порядке. Найти вероятность того, что у него снова получилось это же слово.
- 2.16. На одинаковых карточках написаны буквы а, а, б, г, е, р, л. Карточки перемешивают и раскладывают в ряд. Какова вероятность того, что при этом получится слово «алгебра»?

- 2.17. Числа 1, 2, 3, 4, 5 написаны на 5 карточках. Наудачу последовательно вынимаются 3 карточки и ставятся слева направо в порядке появления. Чему равна вероятность того, что полученное таким образом трехзначное число не содержит цифры 4?
- 2.18. В партии из 10 деталей 4 нестандартных. Определить вероятность того, что среди выбранных наудачу трех деталей две окажутся нестандартными.
- 2.19. Из 15 билетов лотереи 4 выигрышных. Какова вероятность того, что среди взятых наугад шести билетов будет 2 выигрышных?
- 2.20. Какова вероятность того, что три друга попадут в комиссию, состоящую из трех человек, если комиссию можно избрать из 15 человек?
- 2.21. Слово «интеграл» составлено из букв разрезной азбуки. Наудачу случайно берут 4 карточки и складывают в ряд. Какова вероятность получить при этом слово «игра»?
- 2.22. Из колоды карт наудачу извлекается 3 карты. Найти вероятность того, что A-одна карта окажется бубновой масти; B 2 карты черви; C- все разной масти.
- 2.23. Из колоды карт извлекается 4 карты. Найти вероятность событий: А все черви; В три короля и одна дама; С один туз, один король, одна дама, один валет; Д разной масти.
- 2.24. В группе из 25 студентов оценку «отлично» получили трое студентов, «хорошо» шесть студентов, «удовлетворительно» девять студентов. Какова вероятность того, что два наудачу выбранных студента имеют неудовлетворительные оценки.
- 2.25. В корзине 2 красных, 5 белых и 8 синих шара. Наудачу достают три шара. Найти вероятность событий: А все одного цвета; В все разного цвета; С есть два синих шара; Д ровно два шара одного цвета.

Практическое занятие 3. Вычисление вероятностей сложных событий

Цель: изучить основные методы вычисления вероятностей сложных событий.

Продолжительность работы: 90 мин.

- 3.1. В ящике 7 белых шаров и 8 черных. Найти вероятность того, что взяли 1 белый; 2 черных; 3 белых.
- 3.2. Студент сдает математику с вероятностью 0,7, физику с вероятностью 0,8, философию 0,9. Найти вероятности: А сдаст все экзамены; В сдаст хотя бы один экзамен; С сдаст ровно два экзамена; Д сдаст ровно один экзамен? (0,504; 0,994; 0,398; 0,092)
- 3.3. Студент пришел на зачет, зная из 30 вопросов только 24. Какова вероятность сдать зачет, если после отказа отвечать на первый вопрос преподаватель задает еще один вопрос? (28/29)
- 3.4. Программа экзамена содержит 30 вопросов, из которых студент знает только 15. Для успешной сдачи экзамена нужно ответить на 2 предложенных вопроса, или на один из них и дополнительный вопрос. Какова вероятность, что студент сдаст экзамен?
- 3.5. В городе 4 библиотеки, в фонде каждой из которых с вероятностью 0,4 есть нужная студенту книга. В поисках книги студент обходит библиотеки пока не найдет ее или пока не обойдет все библиотеки. Найти вероятность: А студент посетит 2 библиотеки; В не более двух библиотек; С четыре библиотеки. Что вероятнее: найдет книгу, или нет? (0,24; 0,64)
- 3.6. Три друга идут сдавать экзамен. Вероятность сдачи для первого -0.9, для второго -0.5, для третьего -0.8. Найти вероятности: А все сдадут экзамен; В сдаст ровно один из них; С—сдадут больше двух; Д сдаст хотя бы один. (0.36; 0.14; 0.49; 0.99)
- 3.7. В первой корзине 4 белых и 6 черных шаров; во второй 5 белых и 5 черных; в третьей 7 белых и 3 черных шара. Из каждой корзины достают по одному шару. Найти вероятности, что среди этих шаров: A все белые; B ровно один белый; C хотя бы один белый; \mathcal{L} два белых шара (0,14;0,36;0,91;0,41).
- 3.8. Два стрелка делают по одному выстрелу. Вероятность поражения мишени первым стрелком равна 0,8, а вторым 0,7. Найти вероятности следующих событий: а) оба стрелка попали в мишень; б) в мишень попал хотя бы один стрелок.

- 3.9. В группе из 30 учеников на контрольной работе получили: 6 учеников оценки отлично, 10 учеников оценку хорошо, 9 человек оценку удовлетворительно. Какова вероятность того, что все три ученика, вызванных к доске, имеют неудовлетворительные оценки по контрольной работе?
- 3.10. Болты изготавливаются на 3 станках, производящих соответственно 25%, 30%, 45% общего количества продукции. В продукции станков брак составляет соответственно 4%, 3%, 2%. Какова вероятность, что случайно взятый болт окажется дефектным?
- 3.11. В тире имеется 5 ружей, вероятности попадания, из которых соответственно равны 0,5; 0,6; 0,7; 0,8 и 0,9. Найти вероятность попадания при одном выстреле, если стреляющий берет одно из ружей наудачу.
- 3.12. Вероятности правильного определения химического состава детали для каждого из трех контролеров соответственно равны 4/5, 3/4 и 2/5. Найти вероятность того, что будет допущена ошибка, если равновероятно деталь может попасть на проверку к любому из контролеров.
- 3.13. Из 25 приборов, имеющихся в магазине, 5 штук произведены заводом №1, 12 штук заводом №2 и 8 штук заводом №3. Вероятность того, что прибор, изготовленный заводом №1, в течение гарантийного срока не выйдет из строя, равна 0,95. Для прибора 2-го завода такая вероятность равна 0,9, а 3-го завода 0,8. Найти вероятность того, что наудачу взятый прибор выдержит га5.1. Производится 3 выстрела, вероятность попадания при каждом выстреле 0,6. Найти вероятности того, что будет ровно одно; два; три попадания.
- 3.14. Вероятность того, что студент получает стипендию, равна 0,3. Наугад выбираются 4 студента. Найти вероятности того, что среди них получают стипендию: ровно 1; ровно 2; ровно 3; никто не получает.
- 3.15 Монету бросают 5 раз. Найти вероятность того, что герб будет более 2 раз.
- 3.16. В комнате 6 электроламп. Для каждой лампочки вероятность того, что она придет в негодность в течение года, равна 3/4. Какова вероятность того, что в течение года придется заменить не более двух лампочек?

- 3.17. В классе 12 мальчиков и 18 девочек. Нужно выбрать делегацию из двух человек. Какова вероятность (если считать выбор случайным), что выбраны: 1) два мальчика, 2) две девочки, 3) девочка и мальчик?
- 3.18. Из полной колоды карт (52 листа) вынимается сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.
- 3.19. В телеателье поступили кинескопы с двух заводов: 35 штук с первого завода и 50 со второго. Вероятность того, что кинескоп, изготовленный на первом заводе, не выйдет из строя в течение гарантированного срока, равна 0.85. Аналогичная вероятность для второго завода 0.7. Наудачу выбранный кинескоп выдержал гарантийный срок. Найти вероятность того, что он был изготовлен на втором заводе.
- 3.20. У рабочего есть 10 сверл, 2 из которых имеют дефект. Вероятность того, что в течение смены сверло не придется менять, равна 0,6 для сверла, не имеющего дефект, и 0,3 для сверла с дефектом. Наудачу взятое сверло в течение смены сломалось. Какова вероятность того, что было взято сверло без дефекта?
- 3.21. Для участия в студенческих отборочных соревнованиях направлено из 1 группы курса 4, из второй 6, из третьей 5 студентов. Вероятности того, что студент первой, второй и третьей групп попадет в сборную университета, равны соответственно 0,9; 0,7 и 0,8. Наудачу выбранный студент в итоге соревнования попал в сборную. К какой из групп вероятнее всего принадлежал студент?
- 3.22. На складе готовой продукции находится пряжа, изготовленная двумя цехами фабрики, причем 20% пряжи составляет продукция цеха №2, а остальная цеха №1. Продукция цеха №1 содержит 90%, а цеха №2 70% пряжи первого сорта. Взятый наудачу со склада моток пряжи оказался первого сорта. Какова вероятность, что он из цеха №1?
- 3.23. Во время стендовых испытаний подшипников качения 0,002 отходит в брак. Какова вероятность того, что при случайном отборе 5000 подшипников обнаружится 5 негодных?
- 3.24. Работница обслуживает 800 веретен. Вероятность обрыва пряжи на каждом из веретен в течение некоторого

промежутка времени Т равна 0,005. Найти вероятность того, что произойдет не более 3 обрывов.

- 3.25. Вероятность того, что пассажир опоздает к отправлению поезда, равна 0,01. Какова вероятность того, что из 600 пассажиров опоздают не более двух?
- 3.26. Вероятность того, что покупателю нужна обувь 42 размера, равна 0,4. Найти вероятность того, что из 900 покупателей не более 460 потребуют обувь этого размера.
- 3.27. Вероятность появления успеха в каждом из 625 независимых опытов равна 0.8. Какова вероятность появления успеха от 400 до 520 раз?

Тема 3. Дискретные случайные величины (ДСВ)

Дискретная случайная величина (далее - ДСВ). Графическое изображение распределения ДСВ. Закон распределения ДСП. Математическое ожидание, дисперсия и среднеквадратическое отклонение ДСВ. Понятие биномиального распределения, характеристики. Понятие геометрического распределения, характеристики.

Практическое занятие 4. Построение закона распределения и функция распределения ДСВ. Вычисление основных числовых характеристик ДСВ.

Цель: изучить основные методы составления законов распределения дискретной случайной величины, расчета основных числовых характеристик.

Продолжительность работы: 90 мин.

Составить ряд распределения случайной величины X и вычислить ее числовые характеристики.

- 4.1. Вероятность выигрыша по лотерейному билету 0,2. Случайная величина X число выигравших билетов из трех купленных.
- 4.2. Студент сдает в сессию экзамены с вероятностями: математику -0.8, физику -0.7, историю -0.9. Случайная величина X- число сданных экзаменов.
- 4.3. Студент может сдавать экзамен 3 раза, после чего его отчисляют. Вероятность сдать с 1-го раза равна 0,6, со 2-го -0,7, с 3-

- ro-0,8. Случайная величина X- число приходов на экзамен. Записать функцию распределения.
- 4.4. Студент получает «5» за экзамен: по математике с вероятностью 0,2, по физике -0,1, по истории -0,4. Случайная величина X число «пятерок» в сессию.
- 4.5. Студент ищет нужную формулу в 3 справочниках, причем если нашел, то дальше не ищет. Вероятность найти формулу в 1-ом справочнике -0.4, во 2-ом -0.5, в 3-м -0.7. Случайная величина X число просмотренных справочников.
- 4.6. Шахматист должен сыграть с тремя другими шахматистами. Он знает, что вероятность выиграть у 1-го равна 0,9, у 2-го -0,7, у 3-го -0,3. Случайная величина X число выигранных партий.

Составить ряд распределения случайной величины X и вычислить ее числовые характеристики.

- 4.7. У студента в сумке учебники по математике, физике, истории, геологии. Ему нужно достать учебник по математике, и он наугад достает по одному, пока не достанет нужный. Случайная величина X число вынутых учебников.
- 4.8. Студент посещает занятия с вероятностями: первую пару с вероятностью -0.6, 2-ю -0.9, 3-ю -0.8. Случайная величина X число пар, на которых был студент.
- 4.9. У охотника 3 патрона, и он стреляет в дичь пока не попадет, или пока не закончатся патроны. Вероятность попадания при одном выстреле равна 0,6. Случайная величина X число израсходованных патронов. Записать функцию распределения.
- 4.10. В колоде 36 карт, сдают 6 карт. Случайная величина X число тузов среди сданных карт.
- 4.11. Вероятность того, что студент получает стипендию, равна 0,4. Случайная величина X число студентов, получающих стипендию из 4-х наугад выбранных.
- 4.12. У дежурного гостиницы в кармане 4 различных ключа. Вынув наугад ключ, он пробует открыть дверь комнаты. Составить закон распределения числа опробованных ключей, если

проверенный ключ не возвращается обратно. Найти его числовые характеристики.

Тема 4. Непрерывные случайные величины (далее - НСВ) Понятие НСВ. Равномерно распределенная НСВ. Геометрическое определение вероятности. Нормальный закон распределения.

Практическое занятие 5. Вычисление числовых характеристик НСВ. Построение функции плотности и интегральной функции распределения

Цель: изучить основные методы составления законов распределения непрерывной случайной величины, расчета основных числовых характеристик.

Продолжительность работы: 90 мин.

5.1. Случайная величина X задана функцией распределения (интегральной функцией) F(x). Найти: а) дифференциальную функцию f(x) (плотность вероятности); б) математическое ожидание и дисперсию; в) вероятность попадания случайной величины в заданный интервал (α ;), то есть $P(\alpha < X < \beta)$. г) Построить F(x) и f(x).

$$F(x) = \begin{cases} 0, & x \le 0, \\ 0.5 \cdot x, & 0 < x \le 2, \\ 1, & x \ge 2 \end{cases}$$

5.2. X – непрерывная случайная величина, задана функцией распределения:

$$F(x) = \begin{cases} 0; & x < 1 \\ \frac{1}{2}(x^2 - x); & 1 \le x \le 2 \\ 1; & x > 2 \end{cases}$$

Найти плотность распределения вероятностей, числовые характеристики, вероятность попадания СВ в интервал: [1,5;1,9], [1,2;2,3]

5.3. Из пункта С ведется стрельба из орудия. Предполагается, что дальность полета распределена нормально и среднее его

значение 1000м, с отклонением 5м. Определить (в %), сколько снарядов упадет с перелетом от 5 до 70 метров.

- 5.4. Вес вылавливаемых в прудах зеркальных карпов X случайная величина, имеющая нормальный закон распределения с математическим ожиданием, равным 500 г, и средним квадратическим отклонением 75 г. Записать плотность вероятности случайной величины X. Найти вероятность того, что вес наудачу взятого карпа: а) заключен в пределах от 425г до 550 г; б) более 700г; в) менее 400г.
- 5.5. Некоторая категория работников имеет среднюю зарплату 16 тыс. рублей и среднее квадратическое отклонение зарплаты 4 тыс. рублей. Предполагая, что зарплата X случайная величина, имеющая нормальное распределение, записать ее плотность распределения. Определить процент работников, получающих зарплату: а) более 20 тыс. руб.; б) менее 8 тыс. рублей; в) от 15 до 18 тыс. рублей.
- 5.6. Длина изготавливаемых станком-автоматом деталей представляет собой случайную величину X, имеющую нормальное распределение с математическим ожиданием, равным 200 см, и среднеквадратическим отклонением -0.2 см. Записать плотность распределения случайной величины X. Определить вероятность брака, если допустимые размеры детали 20+0.3 см.
- 5.7. Некоторая категория людей имеет средний вес 60 кг и среднее квадратическое отклонение веса 3 кг. Предполагая, что вес m случайная величина, имеющая нормальное распределение, записать ее плотность распределения. Определить вероятность того, что вес случайно взятого человека: а) отличается от среднего не более чем на 5 кг; б) находится в пределах от 62 до 66 кг; в) менее 50 кг.
- 5.8. Случайная величина X распределена равномерно на интервале (2;8). Записать функцию плотности вероятности, функцию распределения, построить их графики, найти математическое ожидание, дисперсию, среднее квадратическое отклонение и медиану. Найти вероятности P(X<3); P(X>5); P(4<X<6).
- 5.9. Число дней, проведенных больным в больнице, Т случайная величина, имеющая равномерное распределение. Наименьшее число дней, необходимое для обследования, равно 5; наибольшее 12. Записать плотность распределения случайной величины

- Т. Найти ее математическое ожидание, дисперсию; вероятность того, что время пребывания больного в больнице: а) не превысит 7 дней; б) превысит 10 дней; в) будет в пределах от 6 до 8 дней.
- 5.10. Записать функцию плотности и функцию распределения показательного закона, если параметр λ =5; построить их графики. Найти математическое ожидание, дисперсию, среднее квадратическое отклонение, вероятности P(X<7); P(X>3); P(2<X<5).
- 5.12. Время между двумя сбоями вычислительной машины t случайная величина, имеющая показательное распределение с математическим ожиданием, равным 400 часов. Записать функцию плотности вероятности данной случайной величины. Найти вероятность безотказной работы машины в течение а) менее 300 часов; б) более 500 часов.

- 5.13. В нормально распределенной совокупности 15% значений X меньше 12, а 40% значений X больше 16,2. Найти среднее значение и среднее квадратическое отклонение данного распределения.
- 5.13. Игральную кость бросают 80 раз. Найти границы, в которых с вероятностью 0,95 будет заключено число m выпадений шестерки.
- 5.14. Автобусы идут с интервалом 10 минут. Считая, что случайная величина X время ожидания автобуса имеет равномерное распределение, найти A) функции плотности и распределения, построить их графики; Б) среднее время ожидания, дисперсию и среднее квадратическое отклонение времени ожидания; В) вероятности того, что время ожидания автобуса будет не более 3 минут; более 4 минут; от 5 до 8 минут.
- 5.15. Для ремонта автомобиля требуется в среднем 3 часа. Предполагая, что время Т, необходимое для ремонта автомобиля, случайная величина, имеющая показательное распределение, записать плотность вероятности случайной величины Т. Найти ее математическое ожидание, дисперсию, вероятность того, что время ремонта составит: а) самое большее 1,5 часа; б) от 1 до 2 часов; в) более 2,5 часов.

- 5.16. Ребро куба х измерено приближенно: $1 \le \sigma \le 2$. Рассматривая ребро куба как СВ X, распределенную равномерно, найти математическое ожидание и дисперсию объема куба, и вероятность того, что объем куба будет в пределах от 5 до 9.
- 5.17. X непрерывная случайная величина, задана функцией плотности вероятностей:

$$f(x) = \begin{cases} 0 & x < 2 \\ Ax - 4 & 2 \le x \le 3 \\ 0 & x > 3 \end{cases}$$

Найти А, функцию распределения, числовые характеристики.

Тема 5. Математическая статистика

Задачи и методы математической статистики. Виды выборки. Числовые характеристики вариационного ряда. Построение эмпирической функции распределения. Вычисление числовых характеристик выборки. Точечные и интервальные оценки.

Практическое занятие 6. Построение эмпирической функции распределения

Цель: изучить основные методы составления выборки и нахождения точечных оценок параметров распределения.

Продолжительность работы: 90 мин.

- 6.1. Составить дискретный вариационный ряд по выборке: 12, 13, 14, 16, 12, 12, 10, 11, 16, 13, 14, 15, 14, 13, 12, 13, 12, 11, 14, 13. Найти основные числовые характеристики: моду, медиану, выборочное среднее, эмпирическую дисперсию.
 - 6.2. Задан дискретный вариационный ряд

x_i	1	5	7	9	11	13
m_i	4	5	6	10	8	7

Найти основные числовые характеристики: моду, медиану, выборочное среднее, эмпирическую дисперсию.

6.3. Время выполнения расчетного задания различными про-изводственными группами:

38	60	41	51	33	42	45	21	53	60
68	52	47	46	49	49	14	57	54	59
77	47	28	48	58	32	42	58	61	30
61	35	47	72	41	45	44	55	30	40
67	65	39	48	43	60	54	42	59	50

По заданным данным построить интервальный вариационный ряд, для полученного интервального вариационного ряда построить полигон частот, гистограмму, кумуляту и эмпирическую функцию распределения. Найти основные числовые характеристики: моду, медиану, выборочное среднее, эмпирическую дисперсию.

6.4. Измерения дали следующие результаты

1,9	3,1	1,3	0,7	3,2	1,1	2,9	2,7	2,7	4,0	1,7	3,2	0,9	0,8	3,1	1,2
4,1	1,3	2,4	4,5	2,5	0,9	1,4	1,6	2,2	1,5	1,1	2,3	4,3	2,1	0,7	1,2
0,8	0,9	1,7	4,1	4,3	2,6	0,9	0,8	1,2	2,1	3,2	2,9	1,1	3,2	4,5	2,1
2,1	3,8	4,6	3,8	2,3	3,9	2,4	4,1	4,2	0,9	0,9	3,1	4,6	3,1	3,3	2,8
1,9	2,3	3,2	1,8	2,9	1,5	5,1	1,1	1,9	4,0	4,3	1,1	2,6	2,6	2,6	2,6

По заданным данным построить интервальный вариационный ряд, для полученного интервального вариационного ряда построить полигон частот, гистограмму, кумуляту. Найти основные числовые характеристики: моду, медиану, выборочное среднее и эмпирическую дисперсию.

Самостоятельная работа по теме 5

6.5. По выборке: 23, 18, 21, 20, 18, 19, 20, 23, 18, 19, 18, 22, 19, 18, 18, 20, 21, 20, 19, 20. Найти основные числовые характеристики: моду, медиану, выборочное среднее, эмпирическую дисперсию, коэффициенты асимметрии и эксцесса.

6.6. Наблюдения за случайной величиной дали следящие результаты

\bar{x}_i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
y_i	2	4	4	8	12	12	13	15	18	21	19	24	25	28	31

Найти методом наименьших квадратов (МНК) параметры линейной зависимости y = a + bx.

6.7. Значения некоторого признака Y по значениям признака X характеризуются опытными данными:

x_{i}	1	2	3	4	5	6	7
y_i	0,5	0,5	1,5	3,5	6,5	10,5	15,5

Выровнять зависимость *Y* от *X* по параболе $y = ax^2 + bx + c$.

Практическое занятие 7. Вычисление числовых характеристик выборки. Точечные и интервальные оценки.

Цель: изучить основные методы нахождения интервальных оценок параметров распределения.

Продолжительность работы: 90 мин.

- 7.1. Найти доверительный интервал для оценки с надежностью 0,99 неизвестного математического ожидания, \boldsymbol{a} нормально распределенного признака \boldsymbol{X} генеральной совокупности, если известны генеральное среднее квадратическое отклонение 4, выборочная средняя 10,2 и объем выборки 16.
- 7.2. Найти минимальный объем выборки, при котором с надежностью 0,925 точность оценки математического ожидания нормально распределенной генеральной совокупности по выборочной средней равна 0,2, если известно среднее квадратическое отклонение генеральной совокупности $\sigma = 1,5$.

7.3. Из генеральной совокупности извлечена выборка объема n=20:

\boldsymbol{x}_{i}	-2	1	2	3	4	5
m_{i}	2	4	6	4	3	1

Построить доверительный интервал для математического ожидания генеральной совокупности с надежностью 0,95.

7.4. По выборке: 2; 3; 5; 4; 5; 7; 5; 3; 1; 6, найти доверительный интервал для математического ожидания генеральной совокупности с надежностью 0,95. Из генеральной совокупности извлечена выборка объема n=100:

10	12	13	14	15	15	25	26	27	25	24	23	11	10	15	16	17
34	32	31	30	22	24	24	25	12	13	18	19	20	22	22	23	24
13	14	14	23	23	25	27	50	14	48	40	41	30	32	34	35	23
35	35	47	32	41	45	44	35	27	28	29	24	26	30	24	26	27
37	35	39	48	43	30	34	42	25	35	34	29	30	30	31	31	32
16	22	30	40	50	10	26	35	30	29	17	25	34	29	31		

Оценить с надежностью 0,95 математическое ожидание *а* нормально распределенного признака генеральной совокупности по выборочной средней при помощи доверительного интервала.

Самостоятельная работа по теме 5

7.5. Найти доверительный интервал для дисперсии генеральной совокупности с надежностью 0,95 по выборке

x_i	12	18	24	30
m_i	4	10	5	1

- 7.6. Найти доверительный интервал для дисперсии генеральной совокупности по выборке: 2; 3; 5; 4; 5; 7; 5; 3; 1; 6, с надежностью 0,95.
- 7.7. По выборке объема n=30 найден средний вес $\bar{x}=130$ г изделий, изготовленных на первом станке; по выборке объема m=40 найден средний вес $\bar{y}=125$ г изделий изготовленных на втором станке. Генеральные дисперсии известны: D(x)=60г², D(y)=80г². Требуется, при уровне значимости 0,05, проверить нулевую гипотезу H_0 : M(x)=M(y) при конкурирующей гипотезе H_1 : $M(x)\neq M(y)$. Предполагается, что случайные величины X и Y распределены нормально и выборки независимы.
- 7.8. По двум независимым малым выборкам, объемы которых n=10 и m=8, извлеченным из нормальных генеральных совокупностей, найдены выборочные средние $\bar{x}=142,3; \quad \bar{y}=145,3$ и исправленные дисперсии $\hat{S}_x^2=2,7; \quad \hat{S}_y^2=3,2$. При уровне значимости 0,01 проверить нулевую гипотезу H_0 : M(x)=M(y) при конкурирующей H_1 : $M(x)\neq M(y)$.

Критерии оценки практической работы

Отметка	Критерии	Показатели по 100-й шкале
5	 работа выполнена в полном объеме, приведены все шаги решения и получены верные ответы 	100 баллов
(отлично)	— работа выполнена в полном объеме, приведены все шаги решения, но имеется одна - две вычислительные ошибки	(90;100) баллов
4 (хорошо)	 работа выполнена полностью, но при выполнении обнаружилось недостаточное владение навыками работы в рамках поставленной задачи 	(85;90) баллов
	 правильно выполнена большая часть работы (свыше 85%) работа выполнена полностью, но использованы наименее оптимальные подходы к решению поставленной задачи 	(80;85) баллов
3 (удовлетво- рительно)	– работа выполнена не полностью, допущено более трех ошибок, но обучающийся владеет основными навыками работы, требуемыми для решения поставленной задачи.	(65;79) баллов
2 (неудовле- твори- тельно)	— допущены существенные ошибки, показав- шие, что обучающийся не владеет обязатель- ными знаниями, умениями и навыками ра- боты или значительная часть работы выпол-	(50;65) баллов
(CIBIIO)	нена не самостоятельная часть расоты выпол- нена не самостоятельно. — работа показала полное отсутствие у обуча- ющегося обязательных знаний и навыков ра- боты по проверяемой теме.	(30;50) баллов

Список источников

- 1. Спирина, М. С. Теория вероятностей и математическая статистика [Электронный ресурс] : учебник для студентов среднего профессионального образования, обучающихся по специальностям 09.02.07 «Информационные системы и программирование», 09.02.06 «Сетевое и системное администрирование» / М. С. Спирина, П. А. Спирин. Москва : Академия, 2017. 352 с. Режим доступа: http://www.academia-moscow.ru/catalogue/4831/295518/. Загл. с экрана.
- 2. Спирина, М. С. Теория вероятностей и математическая статистика. Сборник задач [Электронный ресурс] : учебное пособие для студентов среднего профессионального образования, обучающихся по специальности 09.02.07 «Информационные системы и программирование», 09.02.06 «Сетевое и системное администрирование» / М. С. Спирина, П. А. Спирин. Москва : Академия, 2017. 192 с. Режим доступа: http://www.academia-moscow.ru/catalogue/4831/295420/. Загл. с экрана. (15.12.2018)
- 3. Кристалинский, В. Р. Теория вероятностей в системе Mathematica. Санкт-Петербург : Лань, 2018. 136 с. Режим доступа: http://e.lanbook.com/book/103063 . Загл. с экрана.
- 4. Гмурман, В. Е. Теория вероятностей и математическая статистика 12-е изд. [Электронный ресурс]. Москва : Юрайт, 2018. 479 с. Режим доступа: https://biblio-online.ru/book/teoriya-veroyatnostey-imatematicheskaya-statistika-413578 . Загл. с экрана.
- 5. Кочетков, Е. С. Теория вероятностей и математическая статистика. Москва : НИЦ ИНФРА-М, 2017.-240 с. Режим доступа: http://znanium.com/go.php?id=760157 . Загл. с экрана.
- 6. Ивашев-Мусатов, О. С. Теория вероятностей и математическая статистика 3-е изд., испр. и доп.[электронный ресурс]. Москва : Юрайт, 2018. 224 с. Режим доступа: https://biblioonline.ru/book/teoriya-veroyatnostey-i-matematicheskaya-statistika-413576 . Загл. с экрана.
- 7. Попов, А. М. Теория вероятностей и математическая статистика 2-е изд., испр. и доп.[Электронный ресурс]. Москва : Юрайт, 2018. 434 с. Режим доступа: https://biblioonline.ru/book/teoriya-veroyatnostey-i-matematicheskaya-statistika-413696. Загл. с экрана.

- 8. Васильев, А. А. Теория вероятностей и математическая статистика 2-е изд., испр. и доп. [Электронный ресурс]. Москва: Юрайт, 2018. 253 с. Режим доступа: https://biblioonline.ru/book/teoriya-veroyatnostey-i-matematicheskaya-statistika-415807. Загл. с экрана.
- 9. Палий, И. А. Теория вероятностей. задачник 3-е изд., испр. и доп. [Электронный ресурс]. Москва: Юрайт, 2018. 236 с. Режим доступа: https://biblio-online.ru/book/teoriya-veroyatnostey-zadachnik-415915. Загл. с экрана.