MUHHCTEPCTBO HAVKU U BBICILIEI'O OBPA3OBAHUS POCCUMCKOM ®EJIEPALIUA

dbeneparbHOE TOCYAAPCTBEHHOE 010 PKETHOE 00pa30BaTeIbHOE YUPEIKICHUE BBICIIIETO 00pa30BaHUs
«KY3BACCKUI T'OCYJAPCTBEHHBIN TEXHUYECKUI YHUBEPCUTET UMEHHU T. ®. TOPEAUEBA»
@umuan Ky3I'TVY B r. benoso

Kadenpa nnxxenepHo-3koHoMU4ECKast

IIM.02 OcymecTBieHre HHTErPAlUN POTPAMMHBIX MOYJIeil
MJK.02.01 Texnosorusi pa3padoTKu NPOrpaMMHOI0 00ecrneYeHus
Meronnueckre peKOMeH1auun
10 BBIIIOJTHEHUIO CAaMOCTOSITENIbHBIX PadoT
JUISL CHIEIMAIbHOCTH
09.02.07 «udopmainoHHbIE CUCTEMBI 1 IPOTPAMMHUPOBAHUE

CocraButenb: BurBunknii M. H.
PaccMoTpeHbl U yTBEpKIEHBI Ha
3aceaHuu Kadeapbl

[IpoTokon Ne 6 ot 14.02.2026 r.
PexomMen10BaHO yueOHO-
METOAUYECKON KOMUCCHUEH
cunenuanbHocter CIIO B kauecTBe
3JIEKTPOHHOTO U3JIaHUS JJIs
UCIOJIb30BaHUs B yUEOHOM
nporecce

ITpoTokon Ne 6 ot 17.02.2026 r.

ﬂon raHOBa >Ka HHaQ Moanucano LU1dpoBOI NOANUCHIO:

[lonranosa XaHHa AnekcaHgpoBHa

AJ‘IeKca HﬂpOBHa [laTa: 2026.02.18 11:16:19 +07'00'

benoso 2026

COJIEP)KAHME

OPTAHUBALIMS CAMOCTOSITETIBHOM PABOTDBIoovoeeeieeeeeeeeeeeeeee e 3
IIJITAHUPOBAHHWE BHEAY JUTOPHOM CAMOCTOSTEJIBHOM PABOTBI ..., 4
KOHTPOJIb PE3YJIbTATOB BHEAYJIJUTOPHOM CAMOCTOSTEJIBHOM PABOTDBI........coovveieeerenn 6
METOJIUYUECKHUE MATEPHATIBLc.oiiiiieeeieeteetee ettt ettt sttt et et e s e enaesteestensesseensenseeseenes 7
CIHCOK UCTIOJIB3YEMOM JIUTEPATYPDBL ..o eaneannennees 21
[MPUJIOXKEHMUE 1. CIHCOK TPEIMETHBIX OOJTACTEHeeeuvieeieieeerieaiteeesreeesteeessseeesseeessseesseessssesssessssssesssessssssessenns 22

TIPUJTIOKEHUE 2. KO TS QHATIBA. c..ceeeseseseeeseseseeeseseseseessesesssesssessssesesesssessseseeenes 24

OPTAHU3AIINA CAMOCTOSITEJIBHOM PABOThHI

CamocrosiTenbHast paboTa o0OydaroUuXcsi MOMKET pacCcMaTpUBAThCA — Kak
opranm3zanuonHas (¢opma o0y4yeHHs, OOECHEUMBAIOIIMX YIIpPaBICHHE Y4eOHOI
NESTEABHOCTBIO HWJIM JIEATEIBHOCTh OOYYaIOIIMXCS IO OCBOCHHIO OOIMX U
npoeCCUOHANIbHBIX ~ KOMIIETEHIIUM, 3HAaHMH W yMEHUM y4yeOHOM U Hay4dyHOU
JEeSATENbHOCTH 0€3 MOCTOPOHHEN TOMOIIH.

B yudeOHOM mpoliecce BBIIACISIOT JBa BHUJA CAMOCTOSTEIBHOM pabOTHI:
ayIUTOPHAsl, BHEAYAUTOPHAS.

AyauTOpHasi caMOCTOsiTeJbHasi padora 10 Y4YeOHOW JAWCHUIUIMHE U
npo(ecCHOHAILHOMY ~ MOJYJIIO BBIIIOJIHAETCA Ha y4yeOHBIX 3aHATUSAX 1OJ
HETIOCPEACTBEHHBIM PYKOBOJICTBOM IIPENOAABATENS U 10 €TI0 3aaHUIO.

BHeayauropHasi camocTosiTe/ibHasi paldora BBIIOJHACTCA YYalluMCS IO
3aJIaHUIO TIPEToAaBaTesi, HO 0€3 ero HEMOCPEICTBEHHOTO YYacTHS.

Camocmoamenvnas paboma 00yYaOWUXCsi NPOBOOUMCA C Yelblo:
CUCTEMATU3aLMU U 3aKPEIUICHUS IOJYYEHHBIX TEOPETUYECKUX 3HAHUU U

MIPAKTUYECKUX YMEHUN CTYAEHTOB;

yIIyOJIeHUs U pacIlupEeHUs TEOPETUUECKUX 3HaHUM;

(GbopMUpOBaHUS YMEHUI HCNOJIb30BaTh HOPMATHBHYIO, MPABOBYIO, CIIPABOUYHYIO
JOKYMEHTAIMIO U CIIELUATIBHYIO JIUTEPATYPY;

pa3BUTUSl TO3HABATEIbHBIX CIHOCOOHOCTEH! W aKTUBHOCTH OOYYaroIIMXCA:
TBOPYECKOW MHULIMATHUBBI, CAMOCTOSTENBHOCTH, OTBETCTBEHHOCTH U OPTaHU30BaHHOCTH;

dhopMUPOBaHUS CAMOCTOSITEILHOCTH MBIIIJIEHUSI, CIIOCOOHOCTEN K CaMOpa3BUTHIO,
CaMOCOBEPIIECHCTBOBAHUIO U CaMOPEAIN3ALINH;

Pa3BUTHS UCCIENOBATENBCKUX YMEHUM;

dbopmMupoBaHUs OOITUX M TIPO(PECCHOHATBLHBIX KOMITCTCHITHIA.

IJIAHUPOBAHUE BHEAYJUTOPHON CAMOCTOSITEJIbHON
PABOTDI

[IpenonaBaresneM y4eOHON NHUCHMIUIMHBI SMIIMPUYECKH ONPEIEISIFOTCS 3aTpaThl
BPEMEHU HA CaMOCTOATENIHLHOE BBIMIOJIHEHUE KOHKPETHOTO COJAEpkKaHHUs y4eOHOro
3aJlaHUsl: HAa OCHOBAHMM HAOJIOJECHUN 3a BBIMOJIHEHUEM YYAIIMMUCA ayJIUTOPHOU
CaMOCTOSITENIbHOM paboThI, OMpoca CTYACHTOB O 3aTpaTax BPEMEHHM Ha TO WM WHOE
3aJlaHue, XpOHOMETpaka COOCTBEHHBIX 3aTpaT Ha pEIIeHHE TOW WM WHOM 3aJadu ¢
BHECEHUEM TONMPABOYHOTO Kod(p(duimeHTa W3 pacyera YpOBHS 3HAHUW U YMEHUUH
00yyaroImuxcs.

IIpu pa3pabotke pabouell mNporpaMMmbl IO Yy4e€OHOW JUCUUIUIMHE WU
MpO(QECCHOHAIBHOMY MOJYJII0 TpH IUIAHUPOBAHUU COAEP)KAHUS BHEAYJTUTOPHOU
CaMOCTOSITENIbHOM pabOThl IpernojaBaTesiell yCTaHABIMBAETCS COJEpKaHUE U O00bEM
TEeOpeTUUeCcKor yueOHOM MHPOpMaUU WM NPAKTUYECKUX 3aJJaHUM, KOTOPBIE BBIHOCATCS
Ha BHEAYJUTOPHYIO CaMOCTOSITENbHYIO paboTy, omnpeaenstorcss (GopMbl U METOJBI
KOHTPOJISL PE3YJIbTATOB.

Conepkanue BHEAyAUTOPHOW CaMOCTOSITEILHOM pabOThl ompejenseTcs B
COOTBETCTBUHM C PEKOMEHAYEMBbIMH BHJAMU 3aJaHUM COIVIACHO MporpaMMe y4eOHOMH
JUCLMILTUHBI TPO(HECCHOHATIBHOTO MOTYJIS.

Bupamu 3axaHuii i BHEAyJAMTOPHON CaMOCTOSITEJIbHOH pPadoOThl MOIYT
ObITh:

*01 0671a0eHUsl 3HAHUAMU: KOMIIETEHTHOCTHO-OPUEHTUPOBAHHBIE 3aj[aHueE,
yTeHue Tekcra (yuyeOHMKa, TMEePBOMCTOYHMKA, JIOMOJHUTEIBLHON JIUTEpaTyphl):
COCTaBJieHHME IIJJaHa TEKCTa; Tpaduyeckoe MU300paKeHHe CTPYKTYpbl TEKCTa;
KOHCIIEKTUPOBAHUE TEKCTa; pedepUpoBaHUE TEKCTAa; BBIMUCKM M3 TEKCTa; padoTa co
CJIOBapsIMHU U CIIPAaBOYHUKAMHU, O3HAKOMJICHHE C HOPMAaTUBHBIMU JIOKyMEHTaMU; y4eOHO-
uccienoBaTeNnbckas paboTa; MCIOJNBb30BAHUE ayJIuO- U BHUAE03aMUCEH, KOMIBIOTEPHON
TeXHUKUA U HTEpHETA U 1Ip.;

0N 3aKpenjieHuss U CUCmeMamu3ayuu 3HAHutl. KOMIIETEHTHOCTHO-
OpUEHTHUPOBAaHHOE 3aJlaHhe, paboTa C KOHCIEKTOM JeKuuu (00paboTka TeKCcTa);
NoBTOpHAass paboTra Haja ydyeOHbIM MaTepuasioM (yuyeOHUKa, MEpPBOUCTOYHHUKA,
JOTOJHUTENBHOW JIUTEpATypbl, ayAHO- M BHJEO3alUCEN); COCTABICHHE IUIAHA U

TEC3HUCOB OTBCTA, COCTAaBJICHHC Ta6J'II/II_I 1A CUCTCMAaTHU3alluu yqe6Horo MaTcpuaJia;

M3Y4YEHUE HOPMATUBHBIX MaT€PUAJIOB; OTBETHI HA KOHTPOJIbHBIE BOIIPOCHI; AHATUTUYECKAS
00paboTka TekcTa (AHHOTUPOBAHUE, PELIEH3UpOBaHUE, pedepupoBaHre, KOHTEHT-aHaIU3
U Jp.); TOJATOTOBKAa COOOIIEHWH K BBICTYIUICHHIO Ha CEMHUHape, KOH(pepeHIuu;
MOATOTOBKA pedeparoB, JOKIANOB; COCTaBlieHWE Oubnmorpaduu, TEMaTHYECKHX
KPOCCBOPAOB; TECTUPOBAHUE U JIP.;

o1 opmuposanus KomnemeHyui. KOMIIETEHTHOCTHO-OPUEHTHPOBAHHOE
3aJlaHue, pelIeHUe 3a/1ad U YNpPaXHEHUH Mo 00pa3lly; pelIeHHe BapUaTUBHBIX 33/1a4 W
yIpa>KHEHUI; BBIMOJHEHUE YEPTEIKEN, CXEM; BHIMOJIHEHUE PACU€THO- rpaduyecKux padbor;
pelIEHNEe CUTYallMOHHBIX NEJAarorMyecKuX 3aJad; MOATOTOBKA K JEJIOBBIM HIPaM;
IPOEKTUPOBAHUE U MOJCIUPOBAHUE Pa3HBIX BUJOB U KOMIIOHEHTOB MPOECCHOHATBHON
JESTeIbHOCTH; IOATOTOBKA KYPCOBBIX PAa0OT; ONBITHO-IKCIIEPUMEHTaJbHAs pPaldoTa;
YIOPaXXHEHHs] HA TPEHAXEpE; YNPAXKHEHUS CIOPTUBHO-03I0POBUTEIBHOIO XapakTepa;
pedIIeKCUBHBIA aHAIN3 MNPOPECCHOHAIBHBIX YMEHHH C HCIOJIb30BAHUEM ayJauo- U
BUJICOTEXHUKH U JIP.

Bunpl 3aganuii U1t BHEAy IUTOPHOM CaMOCTOSITENIBHON PabOThI, UX COAEPKAHUE U
XapakTep MOTYT UMETh BapUaTUBHBIA U JudHEepeHIIMPOBAHHBINA XapaKTep, yUYUTHIBAThH
cnenupUKy CrlelHalIbHOCTH, U3y4aeMOW IHUCUUIUIMHBI, UHAUBUAYaJIbHbIE OCOOCHHOCTH
CTyJICHTA.

[Ipu npenbsBiIeHMH BHUAOB 3aJaHU HAa BHEAYJIUTOPHYI) CaMOCTOSATEIIBHYIO
paboTy PEKOMEHIYeTCsl MCIOJIb30BaTh IU(PEepeHIUPOBAHHBIN MOAXOA K CTYAECHTAM.
[lepen BbIMOTHEHWEM CTyACHTAaMH BHEAYAUTOPHOM CaMOCTOSITENIbHOM paboThI
MIPENOAAaBaTeNlb NMPOBOAUT MHCTPYKTAXK IO BBINOJHEHHUIO 3aJaHUSA, KOTOPBIM BKIKOYAET
1eNb 3aJaHusl, €ro CoJAep>KaHue, CPOKU BBIIIOJHEHUS, ODUEHTUPOBOUYHBIH 00BEM padOTHI,
OCHOBHBIE TpeOOBaHMUS K pe3ynbTraraM paldoThl, KpUTEpUHM OIEHKHM. B mponecce
MHCTPYKTaXa MPernojaBareiib NpeaynpexaacT 00y4yaromuxcss 0 BO3MOKHBIX TUITHYHBIX
OlIMOKaX, BCTPEUAIOLIUXCS TPHU BBINOJIHEHUN 3aJaHus. MHCTpyKTaXk MpPOBOIUTCS
Mperno/iaBaTesieM 3a cueT 00beMa BPEMEHH, OTBEICHHOTO Ha U3yYEHUE JUCIUTUIUHBI.

CamocrosiTenbHass paboTa MOXKET OCYHIECTBISATHCA HWHAMBUAYAJIBHO WU
rpynnaMu OOyYaromMXcsi B 3aBUCUMOCTH OT LM, 00beMa, KOHKPETHOW T eMaTUKu
CaMOCTOSATENbHON pabOThl, YPOBHS CJIOKHOCTH YPOBHSI YMEHUI 00y4arOIINXCS.

OTueT 1O CaMOCTOSTENbHOM paboTe O0OyYaromMXCs TMPEJOCTaBISETCS B

QJICKTPOHHOM BHIC.

KOHTPOJIb PE3YJBTATOB BHEAYIUTOPHOM
CAMOCTOSTEJBHOM PABOTHI

KoHTponb pe3ynbTaToB BHEAYIUTOPHON CAMOCTOSITENILHON pabOThl CTYACHTOB
MOJKET OCYIIECTBIIATHCS B Mpe/iesiax BPEMEHH, OTBEJIEHHOTO Ha 00s3aTeNbHbIe YUeOHbIE
3aHATHS N0 JUCIMIUIMHE U BHEAYTUTOPHYIO CAMOCTOSATEIbHYIO paboTy 00y4aronuxcst mo
TUCITUTUTMHE, MOKET MPOXOIUTh B MUCHMEHHOW, YCTHOW WM CMEIIaHHOW (opme, ¢
NPEACTABICHUEM MPOAYKTA AEATEIbHOCTH yUallETrOCH.

B kawgectBe (opM U METOAOB KOHTPOJIA BHEAYJIUTOPHOM CaMOCTOSITENHLHOU
paboThl OOy4YaromMXcsi MOTYT OBITh HWCIIOJB30BaHBIL, 3auemvl, MeCmMuposaHue,
camoomuemsl, KOHMPOJbHbIe pabomvl, 3aUWuma meopyeckux pabom u op., Komopwvie
MO2Ym OCYyWecmensimovcsa HA Y4eOHOM 3aHAMUU UIU 6He e20 (Hanpumep, OYEeHKU 3d
pegepam).

KpurepusiMu OLIEHKH pe3yJbTaTOB BHEAYJIUTOPHOM CaAMOCTOSITENIbHON pabOThI
00yyYaromerocs siBJstOTC:

YPOBEHb OCBOCHUS yYaIlllUMCs Y4eOHOTO MaTepuana,

yMEHHE 00y4aroerocsi MUCIojib30BaTh TEOPETUUECKUE 3HAHUS MPU

BBINOJIHEHUHU NPAKTUYECKHUX 3a/1a4;

c(hOpMHPOBAHHOCTH OOITUX U MPOPECCUOHATBHBIX KOMIIETEHITUH;

000CHOBAHHOCTh M YETKOCTb U3JI0’KEHUS OTBETA;

odopMIICHHE MaTepHraja B COOTBETCTBUHU C TPCOOBAHUSIMM.

METOAUYECKHUE MATEPHUAJIbI

PED®EPAT

Pedepar (ot maTmHCKOTO — cO00IIAI0) — KPAaTKOE M3JI0KEHNE B TUCHMEHHOM

BUJIC COJIEp)KaHHUS HAYYHOTO TpyAa (TPyIOB), JUTEpaTypbl MO TeMe. ITO
CaMOCTOSATENIbHAs ~HAy4HO-UCCJeIOBaTelIbCKasi paboTa, Tl€ pacKpbIBaeTcs CyTb
UCCIIETyeMON MpOoOJeMbl, H3J0XKEHHE MaTepuana HOCUT MPOOJIIEMHO-TEeMATUYECKUI
XapakTep, MOKA3bIBAIOTCS Pa3IMYHbIE TOYKU 3PEHHUS, a TAKKE COOCTBEHHBIC B3TJISbI HA
npobiemy. Conepkanne pedepara J0HKHO OBITh TOTUYHBIM.

Kpurepuu ouenku pedepara:

*COOTBETCTBHE TEME;

*r1yOrHa MpopabOTKU MaTepHaa:

*[IPaBUJIBHOCTD U TIOJIHOTA UCTOJI30BaHUS HICTOYHUKOB;

sopopmiieHue pedepara.

JOKJIAJ

Jloknam — BHJI CaMOCTOSITENIBHOW pabOThl OOYYArONIMXCS, HCIOJIb3YETCS B
Y4eOHBIX M BHEKJIIACCHBIX 3aHATHUSIX, CIOCOOCTBYeT (POPMHPOBAHUIO HABBIKOB
MCCJIEIOBATENbCKOM paboThl, pacIIMpseT IO3HABaTEIbHBICE HMHTEPECHl, TMPUydaeT
MPaKTUYECKHU MBICTUTE. [Ipy Hamvcanuu I0KIIaaa Mo 3aJJaHHOM TeMe CIIeIyeT COCTaBUTh
IJ1aH, MOA00paTh OCHOBHBIC WCTOYHWUKH. PaboTas ¢ WMCTOYHHKAMH, IIOTBITATHCS
CUCTEMATU3UPOBATh TMOJTYYEHHBIC CBEJEHUS, CJelaTh BBIBOABI W 0000meHus. B
HACTOAIIEE BPEeMs B YYEOHBIX 3aBECHUSX OKIAIbl COAEPKATEIHbHO MPAKTUYECKU
HUYEM HE OTJIMYaroTcs OoT pedeparoB. CTpykTypa U odopmiieHHe JOKIIaaa TaKoe Ke,
Kak B pedepare.

Kpurepuu ouenku 1oxkiaana:

*COOTBETCTBHE TEME;

*riyOrHa MpopabOTKU MaTepHaa:

*IIPaBWJIBHOCTD U TIOJIHOTA MCTIOJb30BaHMS HCTOYHUKOB;

*o(popMIICHHE JTOKIIAIA.

CamocrosiTesibHasi padoTa COCTOUT U3 2 3aIaHUI:

1. Teopernueckoe 3amanue (pedepat, moxian Ha 10 cTp. Ad);

2. Ilpaktmueckoe 3amaHue (BbIIAETCS MPENOJABATENEM HHIAUBUAYAIbHO

COTJIACHO TIEPEUHIO).

Od¢opmiienne paGoThI

Ha tutynbHOM 5HcTe OCEPEANHE €ro 3aluchiBaeTcs BUI padoThl, HUKE Ha 10
MM — e Ha3BaHUE CTPOUHBIMM OyKBaMH, CIpaBa B HW)KHEM YIJIy — (QaMuIIHUs aBTOpa
pa3palboTKu, rpymmna. B HIKHEH 4acTH TUTYJIBHOTO JINCTA TIOCPEIUHE YKA3bIBAETCS IO
HanMcaHus pa3paboTKu.

[Tpu Habope peKOMEHIyeTCs HCIOJIb30BaTh OCHOBHBIE CHCTEMHBIE TapHUTYPHI
mpudTa TimesNewRoman. Texct mHabupaeTcst ¢ coOOMOICHUEM CISAYIONNX MPABWI: HE
JOIyCKAIOTCs py4HOH Ha0Op HyMepalMH B IJlaBax U ab3amax (TOJIbKO aBTOHyMapalus);
nBa U Oojsee mpoOena Mexay cumBoiamu. [Ipu Habope MOIKHBI pa3nuyaTbCs THPE U
nepuchl; Mapkepbl U JApPYrue 3HAaKU JIOJDKHBI OBITh COXpaHEHbl AHAJIOTMYHBIMU Ha
INPOTSKEHUM BCEro MaTepuana. Mexay MHUIMalaMyd M Ioclie HUX (mepexa daMuineit)
CTaBUTCS HEPa3pBIBHBIN MPOOET.

Pa3smeps! nosneit «o0bIuHOE»: BepxHee 1 cM, jgeBoe 2 cM, HuxkHee 1 cM, npaBoe 1
cM. HyMepanusi cTpanull — BHH3Y «I0 UEHTPY» WpU@PTOM 12 OT. rapHUTYpsl mpudTa
TimesNewRoman, Hymepamusi cTpaHWIl 3allMCKA CKBO3HAs, MPUYEM HAYUHACTCS
IIPOCTAHOBKA HOMEPOB €O cTpaHUllbl «ColepikaHue», ¢ y4eTOM BCEX BIEPEIU CTOSLIUX
CTpaHUII, Ha KOTOPHIX HOMEpa HE MPOCTABIISIOTCSI.

Tembl caMoCTOATENbHOM PadOTHI

No Bonpocel, BBIHOCHMBIE Ha KonunuectBo

pazzena (TeMbl) CaMOCTOSITEJILHOE U3YUYEHUE 4acoB
TEMA 2.1.1. OCHOBHbIECamocTositenbhast pabora Nel. Amnanus 2
[IOHATUA UinpenmeTHoi 00nacTy.
CTAHIOAPTU3ALIA CamocTosiTennbHass padboTa 0OO0ydaroUIUXxcs 2
TPEBOBAHUI KINe2 Pa3zpabotka u o opMIICHHE
[TPOITPAMMHOMY TEXHUYECKOTO 3aJlaHUsl.
OBECIIEYEHMUIO. CamocrosiTenbHas pabotra 00ydHaromuxcs 2

Ne3. Mzydyenue paboThI B CUCTEME KOHTPOJIS

BEPCUM.

TEMA 2.1.2. OIIMCAHUME HCamocTosiTennbHass paboTa 0Oydaromuxcs 2
AHAJIN3 TPEBOBAHMI.Ne4. TToctpoenne muarpammsl Bapuantos
JIMATPAMMBI IDEF jucrions30Banus " JIAarpamMMbl
METOJ0OJIOI'A UML. MMOCJIEJOBATEIBHOCTH.

CamocTtosTenbHass paboTa 00ydaromUXCsH|
NeS. IToctpoenune nuarpammel Koonepannu

N AuarpaMmbl pa3BCPTbIBAHUA.

CamocTosTenbHass paboTa 00ydaromuXcCs|
Neb6. [TocTpoenue uarpaMMbl
JlesITeIbHOCTH, JAuarpaMMbl COCTOSHUM U

JiuarpaMmbl KJIIaCCOB.

CamocrosiTenbHas paboTra 00ydaromuxcsy

No7. IlocTpoeHne nuMarpaMM IOTOKOB

TaHHBIX
TEMA 2.1.3. OLEHKA|CamocTosiTenpHass paboTa 0OyYaromuxcs
KAYECTBA Ne8. Pa3zpaboTka TeCTOBOTO CIiEHApHs.

[TPOT'PAMMHbLIX CamocrosiTenbHass paboTra 00yHaromuxcs
CPEJICTB. Ne9. OneHka HEOOXOAMMOIO KOJIHMYECTBA

TCCTOB.

CamocrosiTenbHas paboTra 00yYaromuxcs

Ne10. Pa3paboTka TECTOBBIX TAKETOB.

CamocrosiTenbHas paboTa 00yYaroluxcs|
Nell. Ouenka NpoOrpamMMHBIX CpPEICTB C

MMOMOIIIbIO METPHK.

CamocrosiTenbHas paboTra 00ydHaromuxcs
Nel2. MHcnekus MporpaMMHOTO KoJa Ha|
[pEAMET COOTBETCTBUS CTaHJapTaM

KOJIUPOBAaHMS

CamocrositenbHast padora Nel. AHaJIu3 npeAMeTHOH 00J1acTH
Tema TunoBas: Paspabotka cuctemMbl "YMHas Oubiauoreka', BaM HY>KHO B3STh U3

[Tpunoxenus 1.

3aganue:

1. N3yuute coBpeMeHHbIe OMOJIMOTEUHbIE CUCTEMBI (KaK TPaJUIIMOHHBIE, TaK U
U poBbIE)

2. [IpoBenuTe aHaIN3 CIEAYIOMMUX ACTIEKTOB:

o KitoueBbie 1osib30BaTENM CUCTEMBI (HE MEHEE 5 TUIIOB)

o OcHOBHBIE OU3HEC-TIPOIECCHI OMOTHOTEKH

o [TpoGieMbl CyIIECTBYIOLIUX CUCTEM

o Tpennpl B OMOIUOTEUHOM Jeiie

3. Cozpaiite gokymeHT "AHanu3 mnpenmeTHou oOnactu" (3-4 cTpaHUllbI),
BKJIFOYAIOIIUI:

o Onucanue npeaMETHON 00J1acTH

o CTerKxX0n1epoB U UX UHTEPECHI

o OcHoBHbIE (PYHKIIMOHATIbHBIE TOTPEOHOCTH

o OrpanuyeHus U pucKu

Kpurepuu ouenku:

. ITonHOTa anHanu3a nojb30BaTech

. ['myOuHa nmoHuMaHusi GU3HEC-TTPOIIECCOB
. BoisiBieHrEe COBpEMEHHBIX TPEHIOB

. KadectBo odopmiieHns JTOKyMeHTa

CamocrosTesbHas padora Ne2. Pa3pabdorka m odopmiieHHe TeXHHMYECKOIo
3alaHus

3ajaHue THMOBOE BaM HYKHO IO CBOeH mnpeaMeTrHoM oOgacru: Ha ocHose
aHajM3a Bamed mpeaMeTHOW obnactu paspaboraiite Texamueckoe 3amanue (T3) Ha
CUCTEMY.

TpeooBanus k T3:

1. CootserctBue ['OCT 34.602-89

2. O6bem: 5-7 cTpanul

3. O0s13aTeNnbHbIE pa3Iebl:

o Haznauenue u nenm Co3aaHusl CUCTCMBI

o TpebGoBanus k GpyHKIIMOHANTY (HE MeHee 15 dyHKIHiA)

o TpeboBaHMs K MMOJIb30BAaTENILCKOMY HHTEp]eiicy
o TpeboBaHus K HaZEKHOCTU U OE30MaCHOCTH

o Cragun u sTansl pa3paboTKH

o [Topsimok KOHTPOJIS ¥ TPUEMKH

KOHerTHbIe (l)yHKHl/IOHaJIl)HBIe TpeﬁOBaHl/lH JOJIZKHBI BRJIIOYAaTb:

. DNEKTPOHHBINA KaTaJIOr KHUT

. Cucremy OpoHUpOBaHUS

. PexomMeHnarenbHyro cucremy

. JInunbIil KaOWHET YuTaTeINs

. Moayne ydera nocemeHun

. Cucremy mrtpadoB 1 HAIIOMUHAHUN

Kpurepuu oueHku:

. [lonHOTa M CTPYKTYpHPOBAHHOCTH 13
. KonkpetHOoCTh TpeOOBaHMiA
. CootBercTBHE CTaHAapTaM 0(OpPMIICHUS

CamocrosiTtesibHas padora Ne3. U3yueHue padoThl B CHCTeMe KOHTPOJISI BepCcuil
3ajaHue TUIIOBOE BaM HY’KHO T10 CBOeil IpeMeTHOM 00J1aCTH:

Cozpaiite yuetnyro 3anuchk Ha GitHub/GitLab

1. Co3zpaiite peno3utopuii smart-library-system
2. OpranusyiTte CTpyKTypy PEIO3UTOPHS:

text

/docs # NOKyMEHTaIIUsI

/src # NCXOMHBIN KO

/tests # TECTHI

/diagrams ~ # amarpaMMbl

README.md # onucanue npoekra

.gitignore # urHopupyemsie Qaitsibt

Tpedyemnble neiicTBus ¢ Git:

1. Co3zpaiite BeTky develop oT main

2. B Betke develop coznaiite cTpyKTypy KaTanioros

3. Coznaiite daitn README.md ¢ onucanuem npoekra

4. Co3znaiite MUHUMYM 5 KOMMHUTOB C OCMBICTICHHBIMH COOOIIEHUSIMH
5. Co3snaiite BETKY feature/user-auth u 100aBbBTE Tyaa (aiin

auth_requirements.md

6. Cwmepxute BeTKy feature/user-auth B develop
7. Coznaiite Pull Request u3 develop B main
8. Jlo6aseTe Ter v0.1.0

Kpurtepum onenku:

. KoppektHocts komana Git

. KadectBO co0OIIEHIIT KOMMUTOB

. Opranu3zaiusi CTpyKTypbl PEIO3UTOPHUS
. Hcnonb30BaHnEe BETBICHUS

CamocrositesibHass padora Ned4. Ilocrpoenue aumarpammbl BapuantoB
HCI0JIb30BAHMSA U INATPAMMBI N10CJIeI0BATEJIbHOCTH

3ajaHue THIIOBOE BAM HY/KHO 110 CBOEH NPeAMETHOM 00J1acTH:

1. Cozpaiite auarpammy BapuaHToB ucnoJib3oBanus (Use Case Diagram) nms

CJIEYIOIINX aKTOPOB:

o Yurarens

o bubnuorekapn

o AJIMMHHUCTPATOP CUCTEMBI

o ['ocTh (HEaBTOPU30BAHHBIN MOJIB30BATEND)

o BHemHss miarexHas cucteMa

2. Jeranu3upyite 3 KIIOYEBBIX CLEHApUs C TMOMOIIBK JHArpaMm

nocaeaoBaTeabHOCTH (Sequence Diagram):

o Perucrparus HOBOro ynuraress

o [Touck u 6poHMpOBaHUE KHUTH

o @opMHpPOBAaHUE OTUYETA O MOMYJIIPHBIM KHUTaM 32 MECSIL]

TpeOooBanus:

. Ucnonb3oBath uncTpyMeHT PlantUML uiu aHaIoru4aHbIM

. He menee 10 mpenenentos Ha Use Case Diagram

. Kaxxnas auarpamma mociaenoBaTelbHOCTH JOJDKHA COAEpKaTbh MUHUMYM 5
O00BEKTOB

° COXpaHI/ITB HCXOIIHLIﬁ KOO AuarpamMm B PCIIO3UTOPHUHU

Kpurepuu onenkmu:

. [TonHoTa oxBata QyHKIMOHAIIA
. Koppekrnocts UML-HOTanun
. JIoru4HOCTh B3aMMOJEHCTBUM

CamocrostenbHasa pabdora NeS. Ilocrpoenme nmarpammbl Koomepanuu u
AUATPAMMBbI pa3BepThIBAHUS

3ajaHue THIIOBOE BaM HY3KHO 110 CBOeii MpeMeTHOI 00J1acTu:

Cosnaiite quarpammy koomnepaiuu (Collaboration Diagram) asns cuenapusi:

l. "YuTaTenb Mpo/ieBaeT CPOK BO3BpaTa KHUTH Yepe3 TUUHbIN kabuHet"

2. Coznaiite auarpammy paseptbiBanus (Deployment Diagram) cuctemsl
"VMHas Oubnmnoreka':

o Be6-ceprep (Nginx/Apache)

o Cepsep npuinoxenuit (PHP/Python)

o baza nannbix (MySQL/PostgreSQL)

o Komi-cepsep (Redis)

o DailyIoOBOE XPAHUIIUILIE

o Knuentckue yerpoiictsa (11K, cMapTdoHbl, TepMUHAIIBI)

TpeboBanus:

. JluarpamMma Koomepaluu: MHUHUMYM 6 OOBEKTOB, NPOHYMEPOBAHHbBIC
COOOIIEHUS

. Juarpamma pa3BepThIBAHUS: yKa3aThb MPOTOKOJBI B3aUMOJICUCTBUS MEXKIY
y3J1aMH

. Onucath XapakTepucTuku kaxoro ysna (OC, I10)

Kpurepuu ouenku:

. JleTanu3anus B3aUMOJICHCTBUM
. PeaicTMYHOCTH apXUTEKTYpbl Pa3BEPThIBAHUS
. KommuiekcHOCTh pereHus

CamocrosiTtesibHas padora Ne6. Ilocrtpoenme nmarpammsbl /lesATeIbHOCTH,
JAUATrPAMMBbl COCTOSIHUI M 1MAarPaMMBbl KJIACCOB

3ajaHue TUIIOBOE BaM HYKHO 110 CBOei NpeIMeTHOM 00J1aCcTH:

l. Juarpamma nesaregbHocTH (Activity Diagram): Ilpouecc "OOpabotka

NOCTYIJICHUSI HOBOM MAapTUU KHUT B OMOJIMOTEKY"

2. Jquarpamma cocrossumii (State Machine Diagram): JXKusHeHHbIH UK
oObekta "Kuura" (cratycel: 3akazaHa, MOJy4yeHa, KaTaIOTM3UPOBaHa, TOCTYIIHA, BblJaHa,
3a0pOHHpPOBaHA, CIIHCAHA)

3. Juarpamma kiaccoB (Class Diagram): OCHOBHbIE CYIIHOCTH CHCTEMBI
(MUHUMYM & KJIACCOB C aTpHOyTaMH M METO/IaMH)

TpeGoBanus Kk AUarpaMme KJaaccos:

. Kmaccer: Book, Reader, Librarian, Loan, Reservation, Category, Author,
Penalty

. VYka3arh TUIIBI JaHHBIX aTPUOYTOB

. Oto0Opa3uTh OTHOIICHMS: HACICAOBaHWE, arperamus, KOMITO3HIIMS,
acCOIALIMS

. Yka3zaTh BUIUMOCTh METOJIOB U aTpUOYTOB

Kpurepuu oueHku:

. KoppekTHoCcTh MOI€IMPOBAHMS TTPOLIECCOB
. ITonHoTa coCcTOSIHMIT 0OOBEKTA
. CBS3HOCTh U HEIPOTUBOPEUYUBOCTH KJIACCOB

CamocrositesibHasi padora Ne7. [locTpoeHne JuarpaMmM nMoTOKOB JIAHHBIX

3ajanMe THUIIOBOEe BaM HY:KHO MO cBoeil mpeamerHou ooOJgactu: Co3spaiite
MHoroypoBHeByto DFD (Data Flow Diagram) ans nporecca "OOciayKuBaHue unTaTens ' :

1. KonrekcrHass nuarpamma (ypoBenb 0): Cucrema "YMHas Oubnuorexka" u
BHEIIHUE CYIIIHOCTH

2. /Anarpamma BepxHero ypoBHsi (ypoBeHb 1): OCHOBHBIE TPOIIECCHI CUCTEMBI

3. Jeranu3anus npouecca (yposens 2): IIpouecc "Boinaua kauru unrarento"

(1eKOMITO3UIMUS Ha MOITPOLIECCHI)

TpeOoBanus:

. HcnonwizoBath HoTamuto I eitna-Capcona
. MuHuMyM 5 BHEITHUX CYIIHOCTEH

. MuHuMyM 2 XpaHUJIUIIA JaHHBIX

. [Toka3zatb MuHUMYM 10 TOTOKOB JaHHBIX

Kpurepum ouenkmu:
. [IpaBUIBHOCTD AEKOMITO3ULIMN

° ITonHOTa TOTOKOB JaHHBIX

. YeTkocTh pas3aeseHus IpoueccoB
CamocrosiTtesibHasi pabora Ne§. PazpadoTka TeCTOBOIO ClieHapust
3ajaHue THMIIOBOE BaM HY:KHO IO cBoeil mpeameTHoil odJsactu: PazpaloTaiite

TECTOBBIE CLICHApUH JUIsl MOAYJiA "BpoHUpOBaHHE KHUTH'":

1. ®opmat cuenapuen: Vcnons3oBars madnon Gherkin (Given-When-Then)
2. KosmuectBo: 10 ciienapues (7 NO3UTUBHBIX, 3 HETaTUBHBIX)

3. IIpumep MO3UTHUBHOIO CLEHAPUSI:

text

Scenario: YcnemnHoe OpoHUPOBaHKUE TOCTYITHOW KHUTH
Given UuTaTenb aBTOPU30BaH B CUCTEME
And Kuura "Bolina u mup" noctyrHa jyisi OpOHUpPOBaHUS
When Yurarens BeiOupaer kuury "Bolina u mup"
And Haxxumaet kHomnky "3abpoHupoBath"
Then Cuctema noaTBep:kaaeT OpOHUPOBAHUE
And Kuura otobpaxkaercs B paznene "3a0poHupoBaHHbIE"
And Ha email yuTaTenst npuxouT yBeJOMIICHUE

,}IOHOJIHI/ITCJII)HBIG CHCHaApHUM O0JI>KHbI BKJIIIOYATh.

. BbponupoBanue yxe 3a0pOHUPOBAHHON KHUTH

. bpoHnpoBanue unrarenem ¢ NnpOCPOUECHHBIMU KHUTAMU
. bpoHnpoBaHne KHHAT pa3HbIX KATETOpUI

. Otmeny OpOHUpPOBaHUS

Kpurepum ouenkmu:

. [TonHoTa MOKpHITUS PYHKITMOHAIA
. YeTtkocTh GOPMYITHPOBOK
. banaHc MO3UTUBHBIX M HETAaTUBHBIX CIICHAPHCB

CamocrosiTtesibHasi padota Ne9. OneHka He00X0AMMOIr0 KOJIMYEeCTBA TECTOB

3ajaHue THMOBOE BaM HY’KHO IO CBOeill mpeaMeTHoOM obOgaacru: [l monyns
"AyTeHTUUKAIMSA TOJb30BaTeNe" MpoBEAUTE OLIEHKY HEOOXOJIMMOro KOJUYECTBa
TECTOB:

1. MeToa ’KBHUBAJIEHTHBIX KJIACCOB:

o [Tomst: morun (email), maposk, 3aTOMHUTE MEHS

o BBII[@JII/ITB KJIaCChl DKBUBAJICHTHOCTH

o OnpenenuTh TECTOBBIE CIydan

2. AHAJIN3 TPAHNUYHbIX 3HAYECHUI:

o JlnuHa naposit (MUHUMYM 8, MaKCUMyM 64 CUMBOJIA)

o Bo3spact unratens (ot 14 no 100 ner)

3. Tadauua NpUHATHSA PellIeHU:

o YcnoBus: BanmuaHbIN email, BanuIHBIN MapOib, aKKAYHT MOITBEPKICH

o JlelicTBus: yCHeNIHBIA BXOJ, OmMMUOKAa BamWmanud, TpeOOBaHHE
NOATBEPKACHUS

4. Paccuuraiite MUHUMAJIbHOE HEO0X0AMMOE KOJIUYECTBO TECTOB

TpeboBanus:

. [IpeacTaBuTh pacueTsl B TAOJIUYHOM BUJIC

. O060CHOBATH BHIOOP KAXKJIOTO TECTA

. Co3znatb MaTpuIly MOKPHITUSI TPEOOBAHUN TECTaMU

Kpurtepun onenku:

. KoppekTHOCTh TpUMEHEHHST METOI0B
. [TomHOTa MOKPBITUSA YCIIOBUI
. D¢ hexTuBHOCTH HAOOpPA TECTOB

CamocrosTesbHas padora Nel(. PazpadoTka TeCTOBBIX IAKETOB

3ajaHue THIOBOE, BaM HYKHO MO0 mnpeajgaraemomy koay php, Pyton
(ITpunoxenun 2):

PazpaboTaiiTe aBTOMaTU3UPOBAHHBIE TECTHI:

Yacrp 1: Moayasubie TecTsl (PHPUnit)
php

class BookTest extends TestCase

{
public function testCanCreateBookWithValidData() { ... }

public function testCannotCreateBookWithEmptyTitle() { ... }
public function testBookStatusChangesCorrectly() { ... }

}

Yacrtp 2: UHTEerpanoHHbIE TECThI

. TectupoBanue B3aumoseicTBusi BookRepository ¢ 6a30ii JaHHBIX
. TectupoBaHue MOMCKA KHUT 10 Pa3IMYHBIM KPUTEPUIM

Yacre 3: HacTpoiika TeCTOBOI0 OKpY:KeHHsI

1. Coznatpe phpunit.xml koHpurypammo

2. Hactpouts TecToByto 6a3zy JaHHBIX

3. Co3znatb (hUKCTYpHI (TECTOBBIC TAHHBIC)
TpeGoBanus:

. Munumywm 15 TectoB

. [ToxpeiTe kona He MeHee 70%

. Hcnonb30BaHne MOK-OOBEKTOB ISl 3aBUCUMOCTEHN
. Hacrpoiika CI/CD pipeline mist 3amycka TeCToB

Kpurtepun onenku:

. KauecTBO TECTOBOrO KO/Ia
. [TonHoTa MOKPBITUS PYHKIIMOHAIIA
. Hactpolika aBTOMaTn4eCcKOro BBIITOJIHEHNUS

CamocrosTesibHas padora Nell. OneHka nMporpaMMHBIX CPeICTB ¢ MOMOIIbIO
METPUK

3ananue THNOBOe, Mo mpemnaraemomy koay php, Pyton (Ilpuiaoxkennu 2)
OLIEHUTH C MOMOIIBI0O METPUK MPOTPAMMHBII KO/,

IIpuMep BbIMOIHEHHS.

[Ipoananu3upyiite npeaocTaBiIeHHbI Ko MoxAyia "Karamor kHHUr" ¢ HOMOIBIO
METpPHK:

HcxoaHblii KO AJ151 aHAJIH3A:

php

class BookCatalog {

private $books = [];

public function addBook($title, $author, $year, $category,
$isbn, $pages, $publisher, $language,
$description, $keywords, $price, $count) {

public function findBooks($criteria) {

if (isset($criteria['title'])) {

b

3axayu:

1. Paccuuraiite Bpyunyto st metona findBooks():
o [[uKIIOMaTHYECKYIO CIIOKHOCTh

o KonuuectBo ctpok koaa (SLOC)

o WNHunekce nojiepxuBaeMoCcTu

2. Y CTaHOBUTE U HACTPOUTE UHCTPYMEHTHI:

o PHPMD nns ananuza npo6ieM Kojaa

o PHP Metrics aiist pacueTa METPUK

3. CrenepupyiTe OTYETHI:

o OTt4eT 0 HapyIIEHUU CTAaHAAPTOB KOAA

o OTt4yer ¢ MeTpuKamHu (CI0KHOCTh, CBA3HOCTb, HACTIEAOBAHUE)
4. [Ipenyoxute peakTopuHr HA OCHOBE METPUK

Kpurepuu ouenku:

TOYHOCTBH pacueToOB METPUK
KauecTBO aHanm3a MHCTpyMEHTaMU

OO60CHOBAHHOCTh PEKOMEHJAIUH 110 pe(aKTOPUHTY

CamocrosiTtesibHas padora Nel2. MHcnekuusi MpoOrpaMMHOIO KoJa HA mpeaMer

COOTBETCTBUA CTaHAAPTaAM KOJAUPOBAHUI.

3ajanue THMOBOe, Mo mpepjgaraemomy koay php, Pyton (Ilpmiaoxenum 2),

HCOﬁXOI{I/IMO IPOBECTH MHCHICKIUIO MPOIrPaMMHOI0 Koaa, Ha MPEeAMET COOTBECTCTBUA

CTaHJAaPTaM KOJAMPOBAHMSI.

IIpuMep BbINOTHEHMS.

[IpoBenuTe MOTHYHO MHCIEKIIMIO KOJIa CUCTeMBI 'Y MHast Onbimorexa':
Yactp 1: CraTnueckuid aHau3

1. Y CcTaHOBHUTE U HACTPOWTE:

o PHP_CodeSniffer ¢ npaBunamu PSR-12

o PHPStan nnst cratuueckoro aHanusa TUIIOB

o Psalm njist moricka onmmo6ok

2. [Ipoananusupyiite 5 ¢haisioB CUCTEMBI

3. Co3znaiite 0T4eT O HAPYIICHHX ¢ KiIacCu(puKaImen:

o Kputnueckue ommbku (6e30macHoCTb, (yHKIIMOHATBLHOCTD)
o OcHOBHBIE HapYIICHUS (CTaHIAPThI KOJUPOBAHUS)

o [IpenynpexaeHus (CTUIb, BOBMOXKHbBIC YITYUIIICHHUS)

Yacrs 2: Pyuynas uncnexkuus [IpoBepbTe KOJI HA COOTBETCTBUE:

l. Cranpapram umenoBanusi: PSR-1, PSR-12

2. ApxurektypHbiM npunuunam: SOLID, DRY, KISS

3. be3onacnocTu: SQL-unbekun, XSS, CSRF

4. IpousBoaurteabHocTu: N+1 npobiaemMa, onTUMHU3aAIIUST 3aITPOCOB

Yactp 3: Co3nanue npaBui s npoekta PaspaGotaiite ¢aitn ruleset.xml mns

PHP_CodeSniffer ¢ kacToMHbIMU TTpaBUIaMu:

. MaxkcumaneHas qiavuHa ctpoku: 100 cuMBOI0B

. 3anpeT Ha ucnoyib3oBanue var dump()

. TpebGoBanue type hints 11t Bcex MeTo10B

. [IpaBuiia AJi1 UMEHOBAHMSI TECTOBBIX METO/I0B

TpebooBanus:

. [IpoBeputs MuaMMYM 500 cTpoK KOIA

. CocTaBUTh IJIaH UCTIPABJICHUS HAPYIIICHUI

. Co3znaTh CKPHUIIT AJI1 aBTOMATHYECKOM MPOBEPKH Mepe KOMMUTOM

Kpurepum ouenkmu:

. [TomHOTa poBEpKH
. ['nmyOuna ananuza
. [IpakTrueckass HEHHOCTh PEKOMEH 1A

° KauectBO HAaCTPOCHHBIX IIpaBUJI

HNHuTerpanus Bcex padoT B eIMHBIA MPOEKT
HTorosbiii pe3yabrar:
CryaeHT co3maeT MOJHBIM IMAKET JOKYMEHTAlMM M KOoJa JUIsl CUCTEMBI '"YMHas

OonobmroTeKa", BKIFOYAFOIIHIA:

1. JlokyMeHTAIIUSA:

o AHalu3 npeaMeTHON obacTu

o TexHuueckoe 3aJaHne

o [Tonusiit Habop UML-auarpamm

o TecToBast fTOKyMeHTaLUs

CIIMCOK MCIIOJIb3YEMOM JIUTEPATYPHI

OcHoBHas JuTEpaTypa
1. PymakoB A.B. Texnonorus pa3pabOTKu MPOTrpaMMHBIX MPOAYKTOB: yueOHOE
uznanue / Pynako A.B. - Mocksa : Akagemus, 2024. - 208 c. (CriennaJIbHOCTH CPEIHETO

npodeccronansHoro oodpaszoBanus). - URL: https://academia-moscow.ru - Pexum

noctymna: DiIeKTpoHHas onbmmoTeka «Academiamoscowy. - TEKCT : 3JEeKTPOHHBI.
JlonoJiHUTEIbHAS JIUTEPATypPa
1. Kazanckuii, A. A. OOBEKTHO-OPHUEHTHPOBAHHOE MIpOrpaMMupoBanue. Visual
Basic : yueOHuK 11 cpeHero npodeccuoHaibHoro oopaszoBanus / A. A. Kazanckuit. —
2-¢ m3a. — Mocksa : MznarensctBo Opaiit, 2025. — 295 ¢. — (IlpodeccronanbHoe
oOpazoBanue). — ISBN 978-5-534-21384-3. — Tekcr : anexkTpoHHbIN // OOpa3oBarenbHas
wiatdopma FOpaiir [caiiT]. — URL: https://urait.ru/bcode/569868.

2. Kazanckuii, A. A. IIporpammupoBanue Ha visual c# 2013.: yueOHOe nmocoOue
st CITO / Kazanckuit A. A.. — Mocksa : FOpaiit, 2020. — 191 ¢. — ISBN 978-5-534-02721-
1. — URL: https://urait.ru/book/programmirovaniena-visual-c-2013-452454. — Texkct :

AIEKTPOHHBIN.

https://academia-moscow.ru/
https://urait.ru/bcode/569868
https://urait.ru/book/programmirovaniena-visual-c-2013-452454

HPUJIOKEHMUE 1. Cniucok npeaMeTHBIX 00J1acTel

1. Pa3paboTka cuctemsbl "DIEKTPOHHBIN YHUBEpcUTET" (YyIpaBieHUE CTyACHTAMH,
KypcaMmu, pacllCAHHEM).

2. Pa3pabotka cuctemsbl "YMHas OonpHUIA" (YUeT MalMEeHTOB, 3alUCh K Bpadam,
MEUIUHCKHUE KapThl).

3. Pazpabotka cucremsl "OunnaiiH-kuHOTeaTp" (KaTayor (UIBMOB, MOIIMUCKH,
pPEKOMEHIaIuN).

4. PazpaGotka cucremsl "@®uTHec-Tpekep" (yd4eT TPEHUPOBOK, IUTaHUE,
nporpecc).

5. Paspabotka cuctembl "YMHBIA goM" (ympaBieHHE YCTpPOMCTBaMU, CIICHAPUU,
AHEPronoTPeOICHHE).

6. Paspabotka cuctemsl "OniaiiH-Mara3u" (KaTajaor TOBapoOB, KOp3MHA, 3aKa3bl,
JIOCTaBKa).

7. Pazpabotka cucteMbl "bpoHupoBanue oTeneil" (mouck, OpOHUpOBAHUE,
yIpaBJICHUE HOMEpPaMHu).

8. Pazpabotka cuctemsl "Arperarop HoBOcTeH" (cOOp HOBOCTEH M3 pa3HBIX
MCTOYHHUKOB, MIEPCOHATH3AIINSA).

9. Paspabotka cuctemsl "[lnatdopma nnsi oHnmaiiH-00yueHusa" (KypcChbl, YPOKH,
TECThI, CEPTUDUKATHI).

10. Paspabotka cuctemsbl "YmpaBieHue mpoektamu'" (3amadyu, KOMaHIbI, BpeMs,
OTYETHI).

11. Pazpabotka cuctembl "CoumanbHasi ceTb s QotorpadoB" (JieHTa,
KOMMEHTapUHU, KOHKYPCBHI).

12. Pazpabotka cucrembl "dopym pa3zpaboTuukoB" (T€Mbl, OTBETHI, PEUTHUHIH,
METKH).

13. Pazpabotka cuctembl "CucreMa MOIACPKKH KIUEHTOB" (THUKETHI, yar, Oaza
3HAHUM).

14. Paspabotka cuctembl "Yder ¢(uHaHCOB" (OXOABI, PACXOJbl, KaTErOpHH,
OTYETHI).

15. Pa3zpaborka cucrembl "IlmaHupoBHIMK — myTewmecTBUW" — (MapIpyThl,
OpoHHMpOBaHHE, JOCTONPUMEYATETLHOCTH).

16. Paszpabotka cuctemsl "Pe3tome u Bakancun" (MOMCK pabOThI, OTKJIMKH, TECTHI)

17. Pa3pabotka cuctemsl "OHIaiiH-pe3epBUPOBAHUE PECTOPAHOB" (CTOJIMKHU, MEHIO,
OT3bIBHI).

18. Pa3zpabotka cucremsl "Kapiepunr" (apeHaa aBToMoOMIICH, oruiaTa, MapKOBKH).

19. Paspabotka cucremsbl "llmardpopma mias mepompusatuii” (aHOHCHI, OWIIETHI,
perucTparus).

20. PazpaGotka cuctembl "YmHas ¢depma" (MOHUTOPHUHI PACTCHHIA,
aBTOMATUYECKUN MOJTUB, OTYETHI).

21. Pa3pabotka cuctembl "Cucrema KOHTpOJds aocTyma" (Yy4eT COTPYIHHUKOB,
IIPOITYCKa, BPEMH).

22. Paspaborka cucrembl "UYar-60T anma 3akaza enapl" (MHTErpammsa ¢
MECCEH/IKEpaMHu, 3aKas3, oriaTa).

23. Pazpabotka cucremsbl "Ilmarpopma mis kpayndangunra" (TIpoexThl, cOOp
CPEICTB, OTYETHI).

24. Pa3pabotka cucreMbl "Cuctema MoHuTopuHra tpancnopta" (GPS-tpekepsl,
MapuipyThl, pacXoJ TOIUIMBA).

25. Pa3pabotka cuctembl "OHIIalH-KOHCTPYKTOP pe3toMe" (11abiIoHbI, 3aMI0JTHEHHE,
AKCIIOPT).

26. Paspabotka cuctemsl "I[lmatrdopma st crpumunra" (BuUmeo, TOIMUCKH,
JIOHATHI).

27. Pa3pabotka cuctemsl "YmpapieHue ckiaaaoM' (y4eT TOBapOB, NEPEMEIICHHUS,
WHBEHTapU3aIus).

28. Pazpabotka cuctembl "llorogHbiii MOHUTOpUHI" (AaHHBIE C JaTYUKOB,
MIPOTHO3bI, OMTOBEILICHHS).

29. Paspabotka cuctembl "CnopTuBHBIA Tpekep" (pe3ysbTaThl COPEBHOBAHUM,
CTaTUCTHKA, PEUTUHTH) .

30. CgBos Tema (coryiacoBaHUE € MPENOJABATEIIEM).

IMMPNJIOKEHMUE 2. Koa 1y anajaunsa.
PHP:

CrpykTypa npekra.
smart-library/

src/

—— Models/

—— Book.php

—— Reader.php

—— Loan.php

—— Repositories/

—— BookRepository.php
—— CatalogRepository.php
— Services/

—— CatalogService.php
—— SearchService.php
— Utils/

L— validator.php

— tests/
—— Unit/
—— Models/
—— BookTest.php
—— ReaderTest.php
— Services/
— CatalogServiceTest.php
—— SearchServiceTest.php
— Utils/

L— validatorTest.php
— Integration/
—— BookRepositoryTest.php
—— CatalogRepositoryTest.php
— Fixtures/

L TestData.php

—— bootstrap.php

— config/
—— database.php
—— test_database.php

—— reports/

—— coverage/
metrics/
—— phpmd/

phpunit.xml
—— COmpoOSser.json
— .gitlab-ci.yml
README.md

1. UcxoaHbli KO AJ151 TECTUPOBAHMS
src/Models/Book.php

php

<?php

namespace SmartLibrary\Models;

/**

* Mooenv kHueu
*/
class Book
{
private const STATUS AVAILABLE = "available';
private const STATUS BORROWED = 'borrowed';
private const STATUS RESERVED = 'reserved';
private const STATUS ARCHIVED = 'archived';

private int $id;

private string Stitle;
private string $author;
private int $publicationYear;
private string $isbn;
private string $category;
private int $pages;

private string Spublisher;
private string $language;
private string $description;
private array $keywords;
private float Sprice;
private int $totalCopies;

private int $availableCopies;

private string $status;
private \DateTime $createdAt;
private ?\DateTime $updatedAt;

public function construct(
string $title,
string $author,
int $publicationYear,
string $isbn,
string $category,
int $pages,
string $publisher,
string $language,
string $description,
array $keywords,
float $price,
int $totalCopies
) {
$this->validateConstructorParams(
$title, $Sauthor, $publicationYear, $isbn, $category,
$pages, Spublisher, $language, $description, $keywords,
$price, $totalCopies

);

$this->title = S$title;

$this->author = $author;
$this->publicationYear = $publicationYear;
$this->isbn = $isbn;

$this->category = $category;

$this->pages = $pages;

$this->publisher = $publisher;
$this->language = $language;

$this->description = $description;
$this->keywords = $keywords;

$this->price = $price;

$this->totalCopies = $totalCopies;
$this->availableCopies = $totalCopies;
$this->status = self::STATUS AVAILABLE;
$this->created At = new \DateTime();
$this->updated At = null;

private function validateConstructorParams(
string $title,
string $author,
int $publicationYear,
string $isbn,
string $category,
int $pages,
string $publisher,
string $language,
string $description,
array $keywords,
float $price,
int $totalCopies

): void {
if (empty(Stitle)) {

throw new \InvalidArgumentException('Title cannot be empty');

if (empty($author)) {

throw new \InvalidArgumentException('Author cannot be empty");

if ($publicationYear < 1000 || $publicationYear > (int)date("Y") + 1) {
throw new \InvalidArgumentException(

'Publication year must be between 1000 and ' . (date("Y") + 1)
);

if (!$this->validateIsbn($isbn)) {
throw new \InvalidArgumentException('Invalid ISBN format');

if ($pages <=0) {

throw new \InvalidArgumentException('Pages must be positive");

if ($price < 0) {

throw new \InvalidArgumentException('Price cannot be negative');

if (StotalCopies <= 0) {

throw new \InvalidArgumentException('Total copies must be positive');

private function validatelsbn(string $isbn): bool

{
// YVnpowennas eanuoayus ISBN (10 unu 13 yugp)

L A]

$isbn = str_replace(['-',"'"], ", $isbn);
return preg_match('/(?:\d{9}[\dX]\d{13})$/", Sisbn);

public function borrow(): void

{

if ($this->availableCopies <= 0) {

throw new \RuntimeException('No copies available for borrowing');

if ($this->status === self::STATUS_ARCHIVED) {

throw new \RuntimeException('Cannot borrow archived book");

$this->availableCopies--;
$this->updateStatus();
$this->updatedAt = new \DateTime();

public function return(): void

{
if ($this->availableCopies >= $this->totalCopies) {

throw new \RuntimeException('All copies are already available');

$this->availableCopies++;
$this->updateStatus();
$this->updatedAt = new \DateTime();

public function reserve(): void

{
if ($this->availableCopies <= 0) {

throw new \RuntimeException('Cannot reserve book with no available copies');

$this->status = self::STATUS RESERVED;
$this->updatedAt = new \DateTime();

public function cancelReservation(): void

{
if ($this->status !==self::STATUS RESERVED) {

throw new \RuntimeException('Book is not reserved");

$this->updateStatus();
$this->updatedAt = new \DateTime();

private function updateStatus(): void
{
if ($this->availableCopies <= 0) {
$this->status = self::STATUS BORROWED;
} elseif ($this->availableCopies < $this->totalCopies) {
$this->status = self::STATUS BORROWED;
} else {
$this->status = self::STATUS AVAILABLE;

public function archive(): void

{
if ($this->availableCopies !== $this->totalCopies) {

throw new \RuntimeException('Cannot archive book with borrowed copies');

$this->status = self::STATUS ARCHIVED;
$this->updatedAt = new \DateTime();

// 'emmepoi

public function getld(): int { return $this->id; }

public function getTitle(): string { return $this->title; }

public function getAuthor(): string { return $this->author; }

public function getPublicationYear(): int { return $this->publicationYear; }
public function getlsbn(): string { return $this->isbn; }

public function getCategory(): string { return $this->category; }

public function getPages(): int { return $this->pages; }

public function getPublisher(): string { return $this->publisher; }

public function getLanguage(): string { return $this->language; }

public function getDescription(): string { return $this->description; }
public function getKeywords(): array { return $this->keywords; }

public function getPrice(): float { return $this->price; }

public function getTotalCopies(): int { return $this->totalCopies; }

public function getAvailableCopies(): int { return $this->availableCopies; }
public function getStatus(): string { return $this->status; }

public function getCreatedAt(): \DateTime { return $this->createdAt; }
public function getUpdatedAt(): ?\DateTime { return $this->updatedAt; }

// Cemmepbl ¢ sanudayuetl
public function setTitle(string $title): void
{

if (empty(Stitle)) {

throw new \InvalidArgumentException('Title cannot be empty");

}

$this->title = S$title;
$this->updatedAt = new \DateTime();

public function setAvailableCopies(int $copies): void

{

if (Scopies < 0 || $copies > $this->totalCopies) {
throw new \InvalidArgumentException(
"Available copies must be between 0 and {$this->totalCopies}"
);
b
$this->availableCopies = $copies;
$this->updateStatus();
$this->updated At = new \DateTime();

public function toArray(): array
{
return [

"id' => $this->id,
'title' => $this->title,
'author' => $this->author,
'publication_year' => $this->publicationYear,
'isbn' => $this->isbn,
'category' => $this->category,
'pages' => $this->pages,
'publisher' => $this->publisher,
'language' => $this->language,
'description' => $this->description,
'keywords' => $this->keywords,
'price’ => $this->price,
'total _copies' => $this->totalCopies,
'available copies' => $this->availableCopies,
'status' => $this->status,
'created_at' => $this->created At->format('Y-m-d H:i:s'),

'updated_at' => $this->updatedAt ? $this->updated At->format("Y-m-d H:i:s") : null,

}
src/Repositories/BookRepository.php
php

<?php

namespace SmartLibrary\Repositories;

use SmartLibrary\Models\Book;
use PDO;
use PDOException;

/>l<>l<
* Penozumoputi 015 pabomul ¢ KHueamu 8 6aze OaHHbIX
*/

class BookRepository

private PDO $connection;

public function construct(PDO $connection)

{

$this->connection = $connection;

public function save(Book $book): int
{
$sql ="
INSERT INTO books (
title, author, publication_year, isbn, category,
pages, publisher, language, description, keywords,
price, total copies, available copies, status
) VALUES (

:title, :author, :publication_year, :isbn, :category,

:pages, :publisher, :language, :description, :keywords,

:price, :total copies, :available copies, :status

$stmt = $this->connection->prepare($sql);

$data = $book->toArray();

unset($data['id'], $data['created at'], $data['updated at']);
$data['keywords'] = json_encode($data['keywords']);

$stmt->execute($data);

return (int)$this->connection->lastInsertld();

public function findByld(int $id): ?Book

{
$sql = "SELECT * FROM books WHERE id = :id";

$stmt = $this->connection->prepare($sql);
$stmt->execute([":id' => $id]);
$data = $stmt->fetch(PDO::FETCH_ASSOC);
if (!$data) {

return null;

return $this->hydrate($data);

public function findBylsbn(string $isbn): ?Book

$sql = "SELECT * FROM books WHERE isbn = :isbn";
$stmt = $this->connection->prepare($sql);

$stmt->execute([":isbn' => $isbn]);

$data = $stmt->fetch(PDO::FETCH_ASSOC);

if (1Sdata) {

return null;

return $this->hydrate($data);

public function findAll(int $limit = 100, int Soffset = 0): array

{
$sql = "SELECT * FROM books ORDER BY title LIMIT :limit OFFSET :offset";
$stmt = $this->connection->prepare($sql);
$stmt->bindValue(':limit', $limit, PDO::PARAM_INT);
$stmt->bindValue(:offset', $offset, PDO::PARAM INT);

$stmt->execute();

$books = [];
while ($data = $stmt->fetch(PDO::FETCH_ASSOC)) {
$books[] = $this->hydrate($data);

return $books;

public function update(Book $book): bool
{

$sql ="

UPDATE books SET
title = :title,
author = :author,
publication year = :publication_year,
isbn = :isbn,
category = :category,
pages = :pages,
publisher = :publisher,
language = :language,
description = :description,
keywords = :keywords,
price = :price,
total copies = :total copies,
available copies = :available copies,
status = :status,
updated at = NOW()

WHERE id = :id

$stmt = $this->connection->prepare($sql);

$data = $book->toArray();
$data['keywords'] = json_encode($data['keywords']);

return $stmt->execute($data);

public function delete(int $id): bool

{
$sql = "DELETE FROM books WHERE id = :id";

$stmt = $this->connection->prepare($sql);

return $stmt->execute([":id' => $id));

public function search(array Scriteria): array

$sql = "SELECT * FROM books WHERE 1=1";

$params = [];

if (lempty(Scriteria['title'])) {
$sql .=" AND title LIKE :title";
$params|':title'] ='%' . $criteria['title'] . '%";

if (lempty(Scriteria['author'])) {
$sql .=" AND author LIKE :author";

$params|':author'] ='%' . $criteria['author'] . '%";

if (lempty(Scriteria['category'])) {
$sql .=" AND category = :category";
$params|':category'] = Scriteria['category'];

if (lempty(Scriteria['min_year'])) {
$sql .=" AND publication_year >= :min_year";

$params[":min_year'] = $criteria['min_year'];

if (!lempty(Scriteria['max_year'])) {
$sql .=" AND publication year <= :max_year";

$params[:max year'] = $criteria['max_year'];
Y _y _y

if (lempty($criteria['min_pages'])) {
$sql .=" AND pages >= :min_pages";

$params[":min_pages'] = $criteria['min_pages'];

if (lempty(Scriteria['max pages'])) {
$sql .=" AND pages <= :max_pages";

$params[":max pages'] = $criteria['max_pages'];

if (isset($criteria['available only']) && Scriteria['available only']) {
$sql .=" AND available copies >0";

if (lempty(Scriteria['keywords'])) {
$keywords = $criteria['keywords'];
if (is_string($keywords)) {
$keywords = explode(',', $keywords);

$keywordConditions = [];

foreach ($keywords as $i => $keyword) {
$param = "keyword '. $i;
$keywordConditions[] = "keywords LIKE {$param}";
$params[$param] ='%" . trim($keyword) . '%'";

if (lempty($keywordConditions)) {
$sql =" AND (" . implode(' OR ', $SkeywordConditions) . ")";

$sql .= " ORDER BY title LIMIT 100";

$stmt = $this->connection->prepare($sql);

$stmt->execute($params);

$books = [];
while ($data = $stmt->fetch(PDO::FETCH_ASSOCQC)) {
$books[] = $this->hydrate($data);

return $books;

public function countByCategory(string $category): int

{
$sql = "SELECT COUNT(*) as count FROM books WHERE category = :category";
$stmt = $this->connection->prepare($sql);

$stmt->execute([":category' => $category]));

$result = $stmt->fetch(PDO::FETCH_ASSOC);

return (int)($result['count'] ?? 0);

public function getTotalBooksCount(): int

{
$sql = "SELECT COUNT(*) as count FROM books";
$stmt = $this->connection->query($sql);
$result = $stmt->fetch(PDO::FETCH_ASSOC);

return (int)($result['count'] ?? 0);

private function hydrate(array $data): Book
{
$book = new Book(
$data['title'],
$data['author'],
(int)$data['publication_year'],
$data['isbn'"],
$data['category'],
(int)$data['pages'],
$data['publisher'],
$data['language'],
$data['description'],
json_decode($data['’keywords'], true) ?? [],
(float)$data['price'],
(int)$data['total copies']

// Yemanasnusaem ceoticmea, komopwvle He 8 KOHCMPYKMope

$reflection = new \ReflectionClass($book);

$idProperty = $reflection->getProperty('id');
$idProperty->setAccessible(true);
$idProperty->setValue($book, (int)$data['id"]);

$availableCopiesProperty = $reflection->getProperty(‘availableCopies');
$availableCopiesProperty->setAccessible(true);
$availableCopiesProperty->setValue($Sbook, (int)$data['available copies']);

$statusProperty = $reflection->getProperty('status');
$statusProperty->setAccessible(true);
$statusProperty->setValue($book, $data['status']);

$created AtProperty = $reflection->getProperty(‘createdAt');
$created AtProperty->setAccessible(true);
$created AtProperty->setValue($book, new \DateTime($data['created at']));

if ('lempty($data['updated at'])) {
$updated AtProperty = $reflection->getProperty(‘updatedAt');
$updated AtProperty->setAccessible(true);
$updated AtProperty->setValue($book, new \DateTime($data['updated at']));

return $book;

}

src/Services/CatalogService.php (ksacc ¢ npodJjiemaMu JJIs aHAJIN3a METPUK)

php
<?php

namespace SmartLibrary\Services;

use SmartLibrary\Repositories\BookRepository;
use SmartLibrary\Models\Book;

/>I<>I<
* Cepsuc kamanoza KHue (cneyuanbHo ¢ npooiemamu 01 aHaiu3a Mempux)
*/

class CatalogService

{
private BookRepository $bookRepository;

private array $statisticsCache = [J;

private int $cacheTtl = 3600;

public function __ construct(BookRepository $bookRepository)

$this->bookRepository = $bookRepository;

Sk
* Memoo ¢ 6b1COKOU YUKTIOMAMUYECKOU CLONCHOCMbIO U MHOSUMU NAPAMEMPAMU
*/

public function addBook(

string $title,

string $author,

int $publicationYear,

string $isbn,

string $category,

int $pages =0,

string $publisher =",

string $language = 'Russian’,
string $description =",
array $keywords =[],

float $price = 0.0,

int $totalCopies = 1,

bool $validatelsbn = true,
bool $checkDuplicates = true,
bool $updateStatistics = true

): Book {

// Banuoayus naseanust
if (empty(trim($title))) {

throw new \InvalidArgumentException('Book title cannot be empty");

if (strlen($title) < 2) {

throw new \InvalidArgumentException('Book title is too short');

if (strlen(Stitle) > 255) {

throw new \InvalidArgumentException('Book title is too long');

// Banuoayus aemopa
if (empty(trim($author))) {

throw new \InvalidArgumentException('Author cannot be empty");

// Banuoauus 2o0a uzoanusi
$currentYear = (int)date('Y");
if ($publicationYear < 1000) {

throw new \InvalidArgumentException('Publication year is too early');

if ($publicationYear > $currentYear + 1) {

throw new \InvalidArgumentException('Publication year is in the future');

// Banuoayus ISBN eciu mpebyemcs
if ($validatelsbn) {
if (!$this->validateIsbnFormat($isbn)) {

throw new \InvalidArgumentException('Invalid ISBN format');

// [Iposepxa na dyoruxkamol eciu mpedyemcsi
if (ScheckDuplicates) {
$existingBook = $this->bookRepository->findBylsbn($isbn);
if ($existingBook !==null) {
throw new \RuntimeException('Book with this ISBN already exists');

// Banuoayus kamezopuu
$validCategories = $this->getValidCategories();
if (!in_array($category, $validCategories, true)) {

throw new \InvalidArgumentException('Invalid book category');

// Banuoayus xonuvecmea cmpanuy
if ($pages < 0) {

throw new \InvalidArgumentException('Pages cannot be negative');

if ($pages > 10000) {

throw new \InvalidArgumentException("Too many pages');

// Banuoayus yemol
if ($price < 0) {

throw new \InvalidArgumentException('Price cannot be negative');

if ($price > 1000000) {

throw new \InvalidArgumentException('Price is too high');

// Banuoayus koruuecmea Konuu
if ($totalCopies <= 0) {

throw new \InvalidArgumentException("Total copies must be positive');

if ($totalCopies > 1000) {

throw new \InvalidArgumentException("Too many copies');

// Co30anue Knueu

$book = new Book(
$title,
$author,
$publicationYear,
$isbn,
$category,
$pages,
$publisher,
$language,
$description,
$keywords,
$price,

$totalCopies

// CoxpaneHnue 6 penozumopuu

$bookld = $this->bookRepository->save($book);

// ObHOBNIeHUe cMamucmuKky eciu mpedyemcs

if (SupdateStatistics) {
$this->updateCategoryStatistics($category);
$this->clearStatisticsCache();

return $book;

/**

* CnooicHbllL Memoo NOUCKA C MHOICECTNBOM) CIOBULL
*/
public function findBooks(array $criteria): array

{
$results = [];

// Eciu ecmov kpumepuu noucka
if (lempty(Scriteria)) {
// [louck no nazeanuio (mounoe cosnaderue)
if (isset(Scriteria['title_exact']) && !empty(S$criteria['title exact'])) {
$books = $this->bookRepository->search(['title' => $criteria['title exact']]);

$results = array _merge(S$results, $books);

// [louck no nazeanuio (vacmuuroe cosnaoenue)
if (isset($criteria['title like']) && !empty(Scriteria['title like'])) {
$books = $this->bookRepository->search(['title' => $criteria['title like']]);
foreach ($books as $book) {
if (!$this->isBookInResults($book, $results)) {
$results[] = $book;

// [louck no asmopy
if (isset($criterial'author']) && !empty(Scriteria'author'])) {
$books = $this->bookRepository->search(['author' => $criteria['author']]);
foreach ($books as $book) {
if (!$this->isBookInResults($book, $results)) {
$results[] = $book;

// Tlouck no kamezopuu
if (isset($criteria['category']) && !empty($criteria['category'])) {
$books = $this->bookRepository->search(['category' => $criteria['category']]);
foreach ($books as $book) {
if (!$this->isBookInResults($book, $results)) {
$results[] = $book;

// Ilouck no 200y uzoanusi
if (isset($criteria['year from']) || isset($criteria['year to'])) {
$yearCriteria = [];
if (isset($criteria['year from'])) {
$yearCriteria['min_year'] = $criteria['year from'];
b
if (isset(Scriteria['year to'])) {

$yearCriteria['max_year'] = $criteria['year to'];

$books = $this->bookRepository->search($yearCriteria);
foreach ($books as $book) {
if (!$this->isBookInResults($book, $results)) {
$results[] = $book;

// [louck no xonuwecmay cmpanuy

if (isset(Scriteria['pages from']) || isset(Scriteria['pages to'])) {
$pagesCriteria = [];
if (isset($criteria['pages from'])) {
$pagesCriteria['min_pages'] = $criteria['pages from'];
b
if (isset(Scriteria['pages to'])) {

$pagesCriteria['max_pages'] = Scriteria['pages to'];

$books = $this->bookRepository->search($pagesCriteria);
foreach ($books as $book) {
if (!$this->isBookInResults($book, $results)) {
$results[] = $book;

// Tlouck moavbko 00CmMynHvix KHU2
if (isset($criteria['available only']) && Scriteria['available only']) {
$availableCriteria = ['available only' => true];

$books = $this->bookRepository->search($availableCriteria);

// @urempyem pe3yibmamol, 0CMABIAS MOIbKO OOCHYNHbLE
$filteredResults = [];
foreach ($results as $book) {
if ($book->getAvailableCopies() > 0) {
$filteredResults[] = $book;

}

$results = $filteredResults;

// [lobasnsiem kKnueu uz noucka no 00CmynHocmu

foreach ($books as $book) {
if (!$this->isBookInResults($book, $results)) {
$results[] = $book;

// [louck no xknouesvim cosam
if (isset($criteria['keywords']) && !empty(Scriteria['keywords'])) {
$keywordCriteria = ['keywords' => $criteria['keywords']];
$books = $this->bookRepository->search($keywordCriteria);
foreach ($books as $book) {
if (!$this->isBookInResults($book, $results)) {
$results[] = $book;

// Copmupoera pe3ynibmamos
if (lempty(Sresults)) {
$sortField = $criteria['sort_by'] ?? 'title';

$sortDirection = $criteria['sort_dir'] ?? 'asc';

usort($results, function ($a, $b) use ($sortField, $sortDirection) {
$valueA = $this->getSortValue($a, $sortField);
$valueB = $this->getSortValue($b, $sortField);

if ($sortDirection === "asc') {
return $valueA <=> $valueB,;
} else {

return $valueB <=> $valueA;

1)

// Ocpanuuenue Koiuuecmea pe3yiomamos
if (isset($criteria['limit']) && S$criteria['limit'] > 0) {
$results = array_slice($results, 0, $criteria['limit']);
}
} else {
// Ecnu kxpumepues nem, 6ozeépaujaem ece KHueu

$results = $this->bookRepository->find All();

return $results;

private function isBookInResults(Book $book, array $results): bool

{

foreach ($results as $Sresult) {
if ($result->getld() === $book->getld()) {

return true;

b

return false;

private function getSortValue(Book $book, string $field)
{
switch ($field) {
case 'title':
return $book->getTitle();
case 'author':

return $book->getAuthor();

case 'year':
return $book->getPublicationYear();
case 'pages'":
return $book->getPages();
case 'price":
return $book->getPrice();
default:
return $book->getTitle();

public function getBookStatistics(): array

{

$cacheKey = 'book _statistics';

if (isset($this->statisticsCache[$cacheKey]) &&
$this->statisticsCache[$cacheKey]['timestamp'] > time() - $this->cacheTtl) {
return $this->statisticsCache[$cacheKey]['data'];

$totalBooks = $this->bookRepository->getTotalBooksCount();
$categories = $this->getValidCategories();

$stats = [

'total _books' => $totalBooks,

'by_category' =>[],

'by_year' =>[],

'by availability' => [
'available' => 0,
'borrowed' => 0,

'reserved' => 0,

'archived' => 0

foreach ($categories as $category) {
$count = $this->bookRepository->countByCategory($category);
$stats['by_category'][$category] = Scount;

// Tlonyuaem 6ce knueu 0151 aHaiu3a

$allBooks = $this->bookRepository->find All(1000);

foreach ($allBooks as $book) {
// Cmamucmuxa no 200am
$year = $book->getPublicationYear();
if (lisset($stats['by year'][$year])) {
$stats['by year'][$year] = 0;
b
$stats['by year'][$year]++;

// Cmamucmuxa no 00CmynHocmu
$status = $book->getStatus();
if ($status === "available') {
$stats['by availability']['available']++;
} elseif ($status === 'borrowed") {
$stats['by_availability']['borrowed']++;
} elseif ($status === "reserved’) {
$stats['by availability']['reserved']++;
} elseif ($status === "archived") {
$stats['by availability']['archived']++;

// Copmupyem no 2cooam
ksort($stats['by year']);

$this->statisticsCache[$cacheKey] = [
'data' => $stats,
'timestamp' => time()

I;

return $stats;

private function validateIsbnFormat(string $isbn): bool
{
// Yoansem oegucwi u npobensvi

$isbn = str_replace(['-',"'"], ", $isbn);

// [Iposepsiem Onuny
$length = strlen($isbn);
if ($length == 10 && $length == 13) {

return false;

// [Ipogepsiem, umo éce cumgovl Yug@pol, KPOMe NOCIEOHE20 KOMOPbILL MOICem Oblmb
X ons ISBN-10
if ($length === 10) {
for ($1=0; $1 <9; $i++) {
if (!is_numeric($isbn[$i])) {

return false;

$lastChar = $isbn[9];

if (!is_numeric($lastChar) && $lastChar !=="X' && $lastChar !=='x") {

return false;

// [Iposepra xonmponvuou cymmol 0nsi ISBN-10
$sum = 0;
for ($i=0; $i <9; $i++) {

$sum += (int)$isbn[$i] * (10 - $i);

$lastDigit = ($lastChar === "X" || $lastChar === 'x") ? 10 : (int)$lastChar;
$sum += §lastDigit;

return ($sum % 11 === 0);

// IIposepxa ons ISBN-13
if ($length === 13) {
for ($1=0; $i < 13; $i++) {
if (!is_numeric($isbn[$i])) {

return false;

// I[Iposepxa koumpoavhou cymmol 011 ISBN-13
$sum = 0;
for ($i=0; $i < 12; $i++) {

$weight = ($1 % 2===0)?1:3;

$sum += (int)$isbn[$i] * $weight;

$checksum = (10 - ($sum % 10)) % 10;

return ($checksum

return false;

(int)$isbn[12]);

private function getValidCategories(): array

{

return [

'Fiction',
'Non-Fiction',
'Science',
"Technology',
'History',
'Biography',
'Children’,
'Fantasy’',
'Mystery',
'Romance’,
'Science Fiction',
'Horror',
'Poetry’,
'Drama’,
'Comics',
'Art!,
'Cookbooks',
"Travel',
'Religion’,

'Education’

private function updateCategoryStatistics(string $category): void

{
//' B peanvrom npunodiceHuu 30ecb 0vlia Obl 102UKA 0OHO8NeHUS CIMAMUCTIUKU
// s npumepa npocmo ouuwaem Kaul

$this->clearStatisticsCache();

private function clearStatisticsCache(): void

{

$this->statisticsCache = [];

// Ewje neckonvko memoooe 0/ y8enutueHust CJLOHCHOCMU KIAcca
public function importBooks(array $booksData): array
{
$results = [
'success' => 0,
"failed' => 0,
'errors' => []

I;

foreach ($booksData as $index => $bookData) {
try {

$book = $this->addBook(
$bookData]'title'] 22 ",
$bookData['author'] ?? ",
$bookData['publication year'] ?? 0,
$bookData['isbn'] 72",
$bookData['category'] ?? 'Fiction',
$bookData['pages'] ?? 0,
$bookData['publisher'] 2? ",

$bookData['language'] ?? 'Russian’,
$bookData['description'] 22 ",
$bookData['keywords'] ?? [],
$bookData['price'] 22 0.0,
$bookData['total copies'] ?? 1,
$bookData['validate isbn'] ?? true,
$bookData['check duplicates'] ?? true,

false // He obnosnisams cmamucmuxy 0s Kaxircoo2o uMnopma

$results['success'J++;

} catch (\Exception $e) {
$results['failed'J++;
$results['errors'][] = [

'index' => $index,
'error' => $e->getMessage(),

'data' => $bookData
I;

// ObHO8IsIEM CIMAmMUCmMuKy 00UH pa3s nocjie UMRHOPma

$this->clearStatisticsCache();

return Sresults;

public function exportBooks(array $criteria = []): array

{
$books = $this->findBooks(Scriteria);

$exportData = [];

foreach ($books as $book) {
$exportData[] = [
'id' => $book->getld(),
'title' => $book->getTitle(),
'author' => $book->getAuthor(),
'isbn' => $book->getlsbn(),
'category' => $book->getCategory(),
'year' => $book->getPublicationY ear(),
'pages' => $book->getPages(),
'price' => $book->getPrice(),
'copies' => $book->getTotalCopies(),
'available' => $book->getAvailableCopies(),
'status' => $book->getStatus()

return $exportData;

public function generateReport(string $type, array Soptions = []): array
{
switch ($type) {
case 'category summary':
return $this->generateCategorySummaryReport($Soptions);
case 'yearly summary":
return $this->generateY earlySummaryReport($options);
case 'availability summary":
return $this->generateAvailabilitySummaryReport($options);
case 'detailed":
return $this->generateDetailedReport(Soptions);
default:

throw new \InvalidArgumentException("Unknown report type: {Stype}");

private function generateCategorySummaryReport(array $options): array
{
$stats = $this->getBookStatistics();
$report = [
'type' => 'category summary’',
'generated _at' => date('Y-m-d H:i:s"),
'data’ => $stats['by_category']
l;

if (isset($options['include percentage']) && Soptions['include percentage']) {
$total = array _sum($stats['by_category']);
foreach ($report['data'] as $category => $count) {
$report['data’][$category] = [
'count' => $count,

'percentage' => $total > 0 ? round(($count / $total) * 100, 2) : 0
I;

return $report;

private function generateYearlySummaryReport(array $options): array
{
$stats = $this->getBookStatistics();
$report = [
'type' => 'yearly summary’,
'generated _at' => date('Y-m-d H:i:s"),
'data’ => $stats['by year']

return $report;

private function generateAvailabilitySummaryReport(array $options): array
{
$stats = $this->getBookStatistics();
$report = [
'type' => 'availability summary’,
'generated at' => date('Y-m-d H:i:s'),
'data’ => §stats['by_availability']
l;

return $report;

private function generateDetailedReport(array $options): array
{

$limit = Soptions['limit'] ?? 100;

$books = $this->bookRepository->find All($1limit);

$report = [
'type' => 'detailed',
'generated at' => date('Y-m-d H:i:s'),
'total _books' => count($books),
'books' =>[]

I;

foreach ($books as $book) {
$report['books'][] = $book->toArray();

return $report;

}

2. TecroBbiii maker
tests/Unit/Models/BookTest.php

php
<?php

namespace Tests\Unit\Models;

use PHPUnit\Framework\TestCase;
use SmartLibrary\Models\Book;

class BookTest extends TestCase

{
public function testCanCreateBookWithValidData(): void

{
$book = new Book(

'"Test Book',
'"Test Author',
2023,
'978-3-16-148410-0',
'Fiction',
300,
'"Test Publisher',
'English’,
"Test Description',
['test', 'book'],
29.99,
5

$this->assertInstanceOf(Book::class, $book);
$this->assertEquals('Test Book', $book->getTitle());
$this->assertEquals('Test Author', $book->getAuthor());
$this->assertEquals(5, $book->getAvailableCopies());

public function testCannotCreateBook WithEmptyTitle(): void
{
$this->expectException(\InvalidArgumentException::class);

$this->expectExceptionMessage('Title cannot be empty');

new Book(

n
>

'"Test Author',
2023,
'978-3-16-148410-0',
'Fiction',

300,

'"Test Publisher’,
'English’,

"Test Description',
[,

29.99,

5

);

public function testCannotCreateBookWithInvalidYear(): void

{

$this->expectException(\InvalidArgumentException::class);

new Book(
'"Test Book',
'"Test Author',
500, // Cnuwxom pannuti 200
'978-3-16-148410-0',
'Fiction',
300,
'"Test Publisher’,
'English’,
"Test Description’,
[,
29.99,
5

);

public function testBookStatusChangesCorrectly(): void
{
$book = new Book(

'"Test Book',
'"Test Author',
2023,
'978-3-16-148410-0',
'Fiction',
300,
"Test Publisher’,
'English’,
"Test Description',
[,
29.99,
3

// M3nauanvno cmamyc "0ocmynno”

$this->assertEquals(‘available', $book->getStatus());

// [locne 3aumcmeosarnust 0OHOU Konuu
$book->borrow();

$this->assertEquals(2, $book->getAvailableCopies());
$this->assertEquals('borrowed', $book->getStatus());

// I[locne 6o36pama

$book->return();

$this->assertEquals(3, $book->getAvailableCopies());
$this->assertEquals(‘available', $book->getStatus());

public function testCannotBorrowWhenNoCopiesAvailable(): void
{
$book = new Book(

'"Test Book',
'"Test Author',
2023,
'978-3-16-148410-0',
'Fiction',
300,
'"Test Publisher’,
'English’,
"Test Description',
L1,
29.99,
1

$book->borrow(); // 3aumcmeyem eduncmeennyio konuro

$this->expectException(\RuntimeException::class);

$this->expectExceptionMessage('No copies available for borrowing');

$book->borrow(); // Ilbimaemcs saumcmeosams ewe pasz

public function testReserveAndCancelReservation(): void
{
$book = new Book(

'"Test Book',
'"Test Author',
2023,
'978-3-16-148410-0',
'Fiction',
300,
'"Test Publisher',
'English’,
"Test Description',
[,
29.99,
2

);

$book->reserve();

$this->assertEquals('reserved', $book->getStatus());

$book->cancelReservation();

$this->assertEquals(‘available', $book->getStatus());

public function testCannotReserve WhenNoCopiesAvailable(): void
{
$book = new Book(

'"Test Book',
'"Test Author',
2023,
'978-3-16-148410-0',
'Fiction',
300,
'"Test Publisher',
'English’,
"Test Description',
[1,
29.99,
1

$book->borrow(); // 3aumcmeyem edurncmeennyio konuwo

$this->expectException(\RuntimeException::class);

$this->expectExceptionMessage('Cannot reserve book with no available copies');

$book->reserve();

public function testArchiveBook(): void
{
$book = new Book(
'"Test Book',
'"Test Author',
2023,
'978-3-16-148410-0',

'Fiction',

300,

'"Test Publisher’,
'English’,

"Test Description',
(1,

29.99,

3

);

$book->archive();
$this->assertEquals(‘archived', $book->getStatus());

public function testCannotArchiveBookWithBorrowedCopies(): void
{
$book = new Book(

'"Test Book',
'"Test Author',
2023,
'978-3-16-148410-0',
'Fiction',
300,
"Test Publisher’,
'English’,
"Test Description’,
L1,
29.99,
2

);

$book->borrow(); // 3aumcmeyem 0ony konuio

$this->expectException(\RuntimeException::class);

$this->expectExceptionMessage('Cannot archive book with borrowed copies');

$book->archive();

public function testToArrayReturnsCorrectStructure(): void
{
$book = new Book(

'"Test Book',
'"Test Author',
2023,
'978-3-16-148410-0',
'Fiction',
300,
'"Test Publisher’,
'English’,
"Test Description',
['test’, 'book’],
29.99,
5

);

$array = $book->toArray();

$this->assertIsArray(Sarray);
$this->assertArrayHasKey('title', $array);
$this->assertArrayHasKey('author', $array);
$this->assertArrayHasKey('isbn', $array);
$this->assertArrayHasKey('status', $array);
$this->assertEquals('Test Book', $array]['title']);

$this->assertEquals(['test', 'book'], $array['keywords']);

public function testSetTitleWithEmptyStringThrowsException(): void
{
$book = new Book(

'Original Title',
'"Test Author',
2023,
'978-3-16-148410-0',
'Fiction',
300,
'"Test Publisher’,
'English’,
"Test Description',
[,
29.99,
5

);

$this->expectException(\InvalidArgumentException::class);

$this->expectExceptionMessage('Title cannot be empty');

$book->setTitle(");

public function testSetAvailableCopiesWithInvalidNumberThrowsException(): void
{
$book = new Book(
'"Test Book',
"Test Author',
2023,

'978-3-16-148410-0',
'Fiction',

300,

'"Test Publisher’,
'English’,

"Test Description',

[,

29.99,

5

);

$this->expectException(\InvalidArgumentException::class);

// IHletmaemcs ycmaHoeuniov bobuue K()l’llll?, yem ececo

$book->setAvailableCopies(10);

b
tests/Unit/Services/CatalogServiceTest.php

php
<?php

namespace Tests\Unit\Services;

use PHPUnit\Framework\TestCase;

use SmartLibrary\Services\CatalogService;

use SmartLibrary\Repositories\BookRepository;
use SmartLibrary\Models\Book;

class CatalogServiceTest extends TestCase

{
private $bookRepositoryMock;

private $catalogService;

protected function setUp(): void

{
$this->bookRepositoryMock = $this->createMock(BookRepository::class);
$this->catalogService = new CatalogService($this->bookRepositoryMock);

public function testAddBookWithValidData(): void

{
$expectedBook = $this->createBookStub();

$this->bookRepositoryMock->expects($this->once())
->method('findBylsbn')
->with('978-3-16-148410-0")

->willReturn(null);

$this->bookRepositoryMock->expects($this->once())
->method('save')
->with($this->isInstanceOf(Book::class))
->willReturn(1);

$book = $this->catalogService->addBook(
'"Test Book',
"Test Author',
2023,
'978-3-16-148410-0',
'Fiction',
300,
"Test Publisher’,
'English’,
"Test Description’,

['test'],

29.99,

$this->assertInstanceOf(Book::class, $book);

public function testAddBookWithDuplicatelsbnThrowsException(): void

{
$existingBook = $this->createBookStub();

$this->bookRepositoryMock->expects($this->once())
->method('findBylsbn')
->with('978-3-16-148410-0")

->willReturn($existingBook);

$this->expectException(\RuntimeException::class);

$this->expectExceptionMessage('Book with this ISBN already exists');

$this->catalogService->addBook(
'"Test Book',
'"Test Author',
2023,
'978-3-16-148410-0',

'Fiction'

public function testAddBookWithInvalidCategoryThrowsException(): void

{
$this->bookRepositoryMock->expects($this->once())

->method('findBylsbn')

->willReturn(null);

$this->expectException(\InvalidArgumentException::class);

$this->expectExceptionMessage('Invalid book category');

$this->catalogService->addBook(
'"Test Book',
'"Test Author',
2023,
'978-3-16-148410-0',

'Invalid Category' // Hecywecmesyrowasa kamezopus

public function testFindBooksWithEmptyCriteriaReturnsAllBooks(): void

{
$expectedBooks = [

$this->createBookStub(),
$this->createBookStub()

I;

$this->bookRepositoryMock->expects($this->once())
->method('findAll')
->willReturn($expectedBooks);

$result = $this->catalogService->findBooks([]);

$this->assertCount(2, $result);

$this->assertSame($expectedBooks, $result);

public function testFindBooksWithTitleCriteria(): void

$searchResults = [$this->createBookStub()];

$this->bookRepositoryMock->expects($this->once())
->method('search")
->with(['title' => "Test'])

->willReturn($searchResults);

$result = $this->catalogService->findBooks(['title like' => "Test']);

$this->assertCount(1, $result);

public function testGetBookStatisticsReturnsCorrectStructure(): void
{
$this->bookRepositoryMock->expects($this->once())
->method('getTotalBooksCount')
->willReturn(10);

$this->bookRepositoryMock->expects($this->exactly(20)) // 20 kamezopuii
->method('countByCategory')

->willReturn(1);

$this->bookRepositoryMock->expects($this->once())
->method('findAll')
->with(1000)
->willReturn([]);

$statistics = $this->catalogService->getBookStatistics();

$this->assertIsArray($statistics);
$this->assertArrayHasKey('total books', $statistics);

$this->assertArrayHasKey('by category', $statistics);
$this->assertArrayHasKey('by year', $statistics);
$this->assertArrayHasKey('by availability', $statistics);
$this->assertEquals(10, $statistics['total books']);

public function testimportBooksReturnsCorrectResults(): void

{
$booksData = [

[
'title' => 'Book 1',
'author' => 'Author 1',
'publication_year' => 2023,
'isbn' =>'978-3-16-148410-0",

'category' => 'Fiction'

'title' => 'Book 2',

'author' => 'Author 2',
'publication year' => 2023,
'isbn' =>'978-3-16-148410-1",

'category' => 'Science'

$this->bookRepositoryMock->expects($this->exactly(2))
->method('findBylsbn')

->willReturn(null);

$this->bookRepositoryMock->expects($this->exactly(2))
->method('save')

>willReturn(1, 2);

$result = $this->catalogService->importBooks($booksData);

$this->assertEquals(2, $result['success']);
$this->assertEquals(0, $result['failed']);
$this->assertEmpty(Sresult['errors']);

public function testGenerateCategorySummaryReport(): void
{
// Mokupyem getBookStatistics
$stats = [
'total books' => 10,
'by category' => ['Fiction' => 5, 'Science' => 5],
'by_year' =>[],
'by availability' => []
l;

$service = $this->getMockBuilder(CatalogService::class)
->setConstructorArgs([$this->bookRepositoryMock])
->onlyMethods(['getBookStatistics'])
->getMock();

$service->expects($this->once())
->method('getBookStatistics')
->willReturn($stats);

$report = $service->generateReport('category summary');

$this->assertEquals('category summary', $report['type']);

$this->assertArrayHasKey('Fiction', $report['data']);
$this->assertArrayHasKey('Science', $report['data']);

private function createBookStub(): Book
{
return new Book(
'"Test Book',
"Test Author',
2023,
'978-3-16-148410-0",
'Fiction',
300,
"Test Publisher’,
'English’,
"Test Description’,
[,
29.99,
5

);

b
tests/Integration/BookRepositoryTest.php

php
<?php

namespace Tests\Integration;
use PHPUnit\Framework\TestCase;
use SmartLibrary\Repositories\BookRepository;

use SmartLibrary\Models\Book;
use PDO;

class BookRepositoryTest extends TestCase

private static $pdo;

private $repository;

public static function setUpBeforeClass(): void
{
// Coz0aem coedunenue ¢ mecmosoti bJ]
self::$pdo = new PDO('sqlite::memory:');
self::$pdo->setAttribute(PDO::ATTR _ ERRMODE,
PDO::ERRMODE_EXCEPTION);

// Coz0aem mabauyy
self::$pdo->exec("
CREATE TABLE books (
id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT NOT NULL,
author TEXT NOT NULL,
publication_year INTEGER NOT NULL,
isbn TEXT NOT NULL UNIQUE,
category TEXT NOT NULL,
pages INTEGER NOT NULL,
publisher TEXT NOT NULL,
language TEXT NOT NULL,
description TEXT NOT NULL,
keywords TEXT NOT NULL,
price REAL NOT NULL,
total copies INTEGER NOT NULL,
available copies INTEGER NOT NULL,
status TEXT NOT NULL DEFAULT 'available',
created at TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP,
updated at TIMESTAMP NULL

").
b

protected function setUp(): void
{

// Ouuwaem mabauyy nepeo KaxincoblM mecmom
self::$pdo->exec("DELETE FROM books");
self::$pdo->exec("DELETE FROM sqlite sequence WHERE name='books"");

$this->repository = new BookRepository(self::$pdo);

public function testSaveAndFindBook(): void
{
$book = new Book(

'Integration Test Book',
'"Test Author',
2023,
'978-1-23-456789-0',
'Fiction',
300,
'"Test Publisher’,
'English’,
"Test Description’,
['test', 'integration'],
29.99,
5

);

// Coxparnsiem KHu2y
$id = $this->repository->save($book);
$this->assertGreaterThan(0, $id);

// Hwem knuey no ID
$foundBook = $this->repository->tfindByld($id);

$this->assertInstanceOf(Book::class, $foundBook);
$this->assertEquals($book->getTitle(), $foundBook->getTitle());
$this->assertEquals($book->getlsbn(), $foundBook->getlsbn());
$this->assertEquals(5, $foundBook->getAvailableCopies());

public function testFindBylsbn(): void
{
$book = new Book(
'ISBN Test Book',
'"Test Author',
2023,
'978-1-23-456789-1",
'Science’,
400,
'"Test Publisher’,
'English’,
"Test Description',
[,
39.99,
3

);

$this->repository->save($book);

$foundBook = $this->repository->findBylsbn('978-1-23-456789-1");

$this->assertNotNull($foundBook);

$this->assertEquals('ISBN Test Book', $foundBook->getTitle());
$this->assertEquals('Science', $foundBook->getCategory());

public function testFind AllWithLimit(): void
{

// Coz0aem 5 KHue
for ($i=1; $i <= 5; $i++) {
$book = new Book(
"Book $i",
"Author $i",
2000 + $i,
"978-1-23-45678 {$i}",
'Fiction',
100 + $i * 50,
'Publisher’,
'English’,
'Description’,
[,
10.00 + $i,
$i
);
$this->repository->save($book);

$books = $this->repository->findAll(3);

$this->assertCount(3, $books);

$this->assertEquals('Book 1', $books[0]->getTitle());
$this->assertEquals('Book 2', $books[1]->getTitle());
$this->assertEquals('Book 3', $books[2]->getTitle());

public function testUpdateBook(): void
{
$book = new Book(

'Original Title',
'Original Author',
2020,
'978-1-23-456789-2',
'History',
250,
'Original Publisher,
'English’,
'Original Description',
[1,
19.99,
2

);

$id = $this->repository->save($book);

// U3mensem knuey
$book->setTitle('Updated Title");
$book->setAvailableCopies(1);

$result = $this->repository->update($book);
$this->assertTrue($result);

// I[Iposepsiem obHoNEHUE

$updatedBook = $this->repository->findByld($id);
$this->assertEquals('"Updated Title', SupdatedBook->getTitle());
$this->assertEquals(1, $SupdatedBook->getAvailableCopies());

public function testDeleteBook(): void
{
$book = new Book(

'Book to Delete’,
'Author’,
2023,
'978-1-23-456789-3',
'Fiction',
300,
'Publisher’,
'English’,
'Description’,
[1,
29.99,
1

$id = $this->repository->save($book);

// Yoansem knuey
$result = $this->repository->delete($id);
$this->assertTrue(Sresult);

// [Iposepsiem, umo kHuea yoaiena
$deletedBook = $this->repository->findByld($id);
$this->assertNull($deletedBook);

public function testSearchByTitle(): void

{
$books = [

new Book('PHP Programming', 'Author 1', 2023, '978-111', 'Technology', 400,
'Pub', 'EN', 'Desc!, [], 49.99, 3),

new Book('PHP Cookbook', 'Author 2', 2022, '978-112', 'Technology', 350, 'Pub',
'EN', 'Desc', [], 39.99, 2),

new Book('JavaScript Guide', 'Author 3', 2023, '978-113', 'Technology', 500, 'Pub',
'EN', 'Desc', [], 59.99, 1),

I;

foreach ($books as $book) {
$this->repository->save($book);

$results = $this->repository->search(['title’ => 'PHP'));

$this->assertCount(2, $results);
$this->assertEquals('PHP Programming', $results[0]->getTitle());
$this->assertEquals('PHP Cookbook', $results[1]->getTitle());

public function testSearchWithMultipleCriteria(): void

{
$books = [

new Book('Book 1', 'Author A', 2020, '978-121", 'Fiction', 300, 'Pub', 'EN', 'Desc',
[1,29.99, 5),
new Book('Book 2', 'Author A', 2023, '978-122', 'Fiction', 400, 'Pub', 'EN', 'Desc',
[1,39.99, 0),
new Book('Book 3', 'Author B', 2022, '978-123', 'Science', 500, 'Pub’, 'EN', 'Desc’',
[1,49.99, 3),
I;

foreach ($books as $book) {
$this->repository->save($book);

$results = $this->repository->search(][
'‘author' => 'Author A',
'min_year' => 2021,
'available only' => false

D;

$this->assertCount(1, $results);
$this->assertEquals('Book 2', $results[0]->getTitle());

public function testCountByCategory(): void
{

$categories = ['Fiction', 'Fiction', 'Science', 'History', 'Fiction'];

foreach ($categories as $1 => $category) {

$book = new Book(

"Book $i",

"Author",

2020 + $i,

"078-13{$i}",

$category,

300,

'Publisher’,

'English’,

'Description’,

[,

29.99,

1
);
$this->repository->save($book);

$count = $this->repository->countByCategory('Fiction');
$this->assertEquals(3, $count);

public function testGetTotalBooksCount(): void

{

// Coz0aem 3 KHuzu
for ($i=1; $i <= 3; $i++) {
$book = new Book(
"Book $i",
"Author",
2023,
"978-14{$i}",
'Fiction',
300,
'Publisher’,
'English’,
'Description’,
[,
29.99,
1
);
$this->repository->save($book);

$count = $this->repository->getTotalBooksCount();
$this->assertEquals(3, $count);

b
tests/Fixtures/TestData.php

php
<?php

namespace Tests\Fixtures;

use SmartLibrary\Models\Book;

class TestData

{

public static function getSampleBooks(): array

{

return [

new Book(

);

'Clean Code',

'Robert C. Martin',

2008,

'978-0132350884,

'"Technology’,

464,

'Prentice Hall',

'English’,

'A handbook of agile software craftsmanship',
['programming', 'clean code', 'best practices'],
39.99,

10

new Book(

"The Pragmatic Programmer’,
'David Thomas, Andrew Hunt',
2019,

'978-0135957059',
'"Technology’,

352,
'Addison-Wesley',
'English’,
"Y our journey to mastery’',
['programming', 'pragmatic', 'software development'],
4499,
8
)
new Book(
'Design Patterns',
'Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides',
1994,
'978-0201633610',
"Technology',
395,
'Addison-Wesley',
'English’,
'Elements of Reusable Object-Oriented Software',
['design patterns', 'oop’, 'software architecture'],

49.99,

public static function getInvalidBookData(): array

{

return [
[
'title' =>", // [lycmoe nazeanue
'author' => 'Author’,

'year' => 2023,

lisbn' => 123",

'category' => 'Fiction'

'title' => '"Valid Title',

‘author' =>", // [lycmoti asmop
'year' => 2023,

'isbn' =>'978-1234567890",

'category' => 'Fiction'

'title' => 'Valid Title',

'author' => 'Author’,

'year' => 500, // Hesephuiii 200
'isbn' =>'978-1234567890',

'category' => 'Fiction'

public static function getSearchCriteria(): array
{
return [
'simple_title' => ['title' => 'Code'],
'author search' => ['author' => 'Martin'],
'yvear range' => ['min_year' => 2000, 'max_year' => 2010],
'available only' => ['available only' => true],
'complex' => [
'title' => 'Pattern’,
'category' => '"Technology',
'min_year' => 1990,

'available only' => true

tests/bootstrap.php

php
<?php

require_ once DIR .'/../vendor/autoload.php';

// Hacmpoiika mecmogozo oKkpyicenust
if (!defined('TEST _MODE")) {
define('TEST MODE], true);

// Yemanoeka epementoii 30Hbl 011 mecmos
date default timezone set('UTC');
phpunit.xml
xml
<?xml version="1.0" encoding="UTF-8"?>
<phpunit xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemal ocation="https://schema.phpunit.de/10.5/phpunit.xsd"
bootstrap="tests/bootstrap.php"
colors="true"
cacheDirectory=".phpunit.cache">
<testsuites>
<testsuite name="Unit Tests">
<directory>tests/Unit</directory>
</testsuite>
<testsuite name="Integration Tests">
<directory>tests/Integration</directory>

</testsuite>

</testsuites>

<source>

<include>
<directory>src</directory>

</include>

<exclude>
<directory>vendor</directory>
<directory>tests</directory>
<directory>reports</directory>

</exclude>

</source>

<coverage>
<report>
<html outputDirectory="reports/coverage"/>
<text outputFile="reports/coverage.txt"/>
<clover outputFile="reports/coverage.xml"/>
</report>

</coverage>

<php>
<ini name="error_reporting" value="-1"/>
<ini name="display errors" value="1"/>
<ini name="display startup errors" value="1"/>
<server name="APP_ENV" value="test"/>
</php>
</phpunit>
composer.json
json
{
mon

"name": "smart-library/library-system",

"description": "Smart Library System with comprehensive testing",

"type": "project",

"require": {
"php": ">=8.1"

s

"require-dev": {
"phpunit/phpunit": "~10.0",
"mockery/mockery": "*1.5",
"squizlabs/php_codesniffer": "*3.7",
"phpmd/phpmd": "*2.13",
"phpmetrics/phpmetrics": "2.8",
"vimeo/psalm": "*5.15",
"phpstan/phpstan": "*1.10"

s

"autoload": {
"psr-4": {

"SmartLibrary\\": "src/"

b

s

"autoload-dev": {
"psr-4": {
"Tests\\": "tests/"
b
s
"scripts": {
"test": "phpunit",
"test-coverage": "phpunit --coverage-html reports/coverage",
"check-style": "phpcs --standard=PSR12 src tests",
"fix-style": "phpcbf --standard=PSR12 src tests",
"phpmd": "phpmd src text
cleancode,codesize,controversial,design,naming,unusedcode",

"phpmetrics": "phpmetrics --report-html=reports/metrics src",

"static-analysis": "phpstan analyse src --level=8",

n, n

"psalm": "psalm",

"o [
"(@check-style",
"(@static-analysis",
"@test"

]

¥
"config": {

"sort-packages": true

h
.gitlab-ci.yml (mpumep xoupurypaunuun CI/CD)
yaml

image: php:8.1

stages:
- test
- analysis

- deploy

variables:

COMPOSER _CACHE DIR: "${CI PROJECT DIR}/.composer-cache"

cache:
paths:
- vendor/

- .composer-cache/

before script:

- apt-get update -yqq
- apt-get install -yqq git libsqlite3-dev sqlite3

- docker-php-ext-install pdo pdo_sqlite
- curl -sS https://getcomposer.org/installer | php

- php composer.phar install --prefer-dist --no-progress --no-suggest

unit-tests:
stage: test
script:

- php vendor/bin/phpunit --testsuite "Unit Tests" --coverage-text --colors=never

integration-tests:
stage: test
script:

- php vendor/bin/phpunit --testsuite "Integration Tests"

coverage:
stage: test
script:
- php vendor/bin/phpunit --coverage-html reports/coverage
artifacts:
paths:
- reports/coverage/

expire in: 1 week

code-style:
stage: analysis
script:

- php vendor/bin/phpcs --standard=PSR12 --colors src tests

phpmd:
stage: analysis

script:

- php vendor/bin/phpmd src text
cleancode,codesize,controversial,design,naming,unusedcode --reportfile
reports/phpmd/report.txt

artifacts:

paths:

- reports/phpmd/

expire in: 1 week

phpmetrics:
stage: analysis
script:
- php vendor/bin/phpmetrics --report-html=reports/metrics src
artifacts:
paths:
- reports/metrics/

expire in: 1 week

phpstan:
stage: analysis
script:

- php vendor/bin/phpstan analyse src --level=8 --no-progress

pages:

stage: deploy
script:

- mkdir public

- ¢p -t reports/coverage public/

- ¢p -t reports/metrics public/
artifacts:

paths:

- public

only:

- master
3. CkpunThl VIS AaHAJIM3a METPHUK
scripts/analyze-metrics.php
php
<?php

/**
* Ckpunm 0151 ananuza Mempux Kooda

*/

require_once DIR . '/../vendor/autoload.php';

echo "=== Ananmu3 metpuk koaa CatalogService ===\n\n",;

// 1. Pyunoti pacuem mempuk 0151 memooa findBooks()
echo "1. PYUHOM PACUYET METPUK:\n";
echo" Meron: CatalogService::findBooks()\n";

// Lluknomamuueckas ciodxcHocms (OUeHKa)

echo" - Ilukmomaruueckas cinoxHocTh (V(G)):\n";
echo" Ocnosusie if ycmoBus: 8\n";

echo" BroxeHHble ycnoBus B nukiax: +3\n";
echo" Jloruueckue oneparopsl: +2\n";

echo" MHWroro V(G)=8+3+2+1=14\n\n";

// Konuwecmeo cmpox xooa
echo" - KomuuectBo cTpok koma (SLOC): ~120 ctpok'\n";

echo" (0e3 koMMeHTapHeB U MyCThIX CTPOK)\n\n";

// Unoexc noodepaoicusaemocmu
echo" - Wuaexc moxnepxuBaemoctu (MI):\n";

echo” MI=171-52*In(V)-0.23 * In(SLOC) - 16.2 * In(LOC)\n";

echo" Omenka: 65-75 (yMepeHHast OAIEPKUBAEMOCTh)\n\n";

// 2. 3anyck uncmpymenmoe ananusa

echo "2. ABTOMATHUYECKUU AHAJIN3 MTHCTPYMEHTAMM:\n";

// PHPMD
echo" 3amyck PHPMD..\n";
exec('vendor/bin/phpmd src/Services/CatalogService.php text
cleancode,codesize,controversial,design,naming,unusedcode', $phpmdOutput);
foreach ($phpmdOutput as $line) {

echo" $line\n";

// PHP Metrics
echo "\n T@'enepanus otuera PHP Metrics...\n";

exec('vendor/bin/phpmetrics --report-json=reports/metrics/metrics.json src/Services/");

// 3. [Ipeonoocenus no pepaxmopumey

echo "\n3. ITPEJIJIOXXEHU A 110 PEGAKTOPHUHIY:\n";

echo" IIPOBJIEMA 1: Cnumkom ninvHHbIA MeToA findBooks()\n";
echo" Pemenne: Pa3gennts Ha mogMeToabI:\n";

echo" - searchByTitle()\n";

echo" - searchByAuthor()\n";

echo" - searchByCategory()\n";

echo" - filterByAvailability()\n";

echo" - sortResults()\n\n";

echo" IIPOBJIEMA 2: Bricokas cBsizanHOCTb ¢ BookRepository\n";

echo" Pemenue: Buenputs unrepdeiic u ucnons3oath Dependency Injection\n\n";

echo " TIPOBJIEMA 3: Muoro napamerpoB B addBook()\n";

echo " Pemenue: Mcnons3zoBare DTO (Data Transfer Object)\n";

echo" class BookData {\n";

echo " public string \S$title;\n";
echo " public string \$author;\n";
echo " // ... ocTalIbHBIC TTOIA\N";

echo" }\n\n";

echo" ITPOBJIEMA 4: /IyonupoBanue Bamumanun\n';

echo" Pemenue: BeiHeCcTH Banuanuio B OTIeNbHBIA Ki1ace Validator\n\n";

echo" IIPOBJIEMA 5: Xectko 3akopOoBaHHbIE KaTeropuu'\n';

echo" Pemenune: XpanuTh kareropuu B 6aze JaHHBIX WM KOHGUTYpanuu\n';

// 4. [lpumep pedpaxmopunea
echo "\n4. [IPUMEP PE@AKTOPHUHI'A:\n";
echo <<<'EXAMPLE'
BbUJIO:
public function findBooks(array $criteria): array {

// 120 CTpOK CIIOKHOTO KOJIa

CTAJIO:

public function findBooks(array $criteria): array {
$results = $this->searchBooks($criteria);
$results = $this->filterBooks(Sresults, $criteria);
$results = $this->sortBooks($results, $criteria);

return $this->limitResults($results, $criteria);

private function searchBooks(array $criteria): array {

// TIoUCK MO OTAETBHBIM KPUTEPUSIM

private function filterBooks(array $books, array $criteria): array {

// OuapTpanus pe3yabTaToB

private function sortBooks(array $books, array $criteria): array {

// CopTUpOBKa

private function limitResults(array $books, array $criteria): array {
// OrpaHUYeHHE KOJIUYECTBA

}
EXAMPLE;

echo "\n\n=== AHanu3 3aBepiieH ===\n";

4. NHCTPYKIHMS 1O HCTOJIB30BAHMIO.

YcTraHoBKA U 3aIyCK TECTOB:

bash

1. Knonuposams npoexm

git clone https://github.com/your-username/smart-library.git
cd smart-library

2. Yemanosums 3a6ucumocmu

composer install

3. 3anycmumu 6ce mecmol

composer test

#4. BCllinI?iZ/ll’nb mecnivbl C NOKPblMUem

composer test-coverage

5. IIposepums cmunv Kooa

composer check-style

composer fix-style

composer phpmd

composer phpmetrics

composer static-analysis

composer psalm

composer ci

CTpyKTypa 0T4EéTOB MOC/€e BLINOJHEHUS:

text

reports/

|— coverage/ # OTUéT O MOKPHITUU TECTAMHU
|— metrics/ # Otuét PHP Metrics

L— phpmd/ # Oruét PHPMD

Python:

Python-moay.as '""Book Similarity Analyzer" nasi uarerpauuu ¢ PHP-nnpoexTom
Crpykrypa MmoayJis
text

book-similarity/

I— __init_.py

|— analyzer.py # OCHOBHOM KJIaCC aHAJIM3a CXOKECTH
|— metrics_calculator.py # Kanbkynsitop MeTpuk ¢ mpoOjieMaMu
|— text processor.py # O0OpaboTka TekcTa

L— similarity algorithms.py # AnropuTMbI CpaBHEHHS

|— tests/

| I-— __init__.py

| I—— test analyzer.py

| |— test_metrics_calculator.py
|

|

L— test_integration.py

|— examples/

| I—— php_integration.php
| L python usage.py

|

|— requirements.txt

|— setup.py

L — README.md

1. OcHOBHOM KO MOAYJIA (C HAMEPEHHBIMH NPOOJIeMaMH VISl AHAJIN3A)

similarity/analyzer.py

python

mnmn

MOlly.Hb aHaJIn3a CXO0KCCTU KHUT' C HAMCPCHHBIMU HpO6H6MaMI/I IJIA aHaJIn3a MCTPUKaMH

mnmn

import re

import math

import string

import hashlib

from collections import Counter, defaultdict

from typing import Dict, List, Tuple, Optional, Union, Any, Set
from dataclasses import dataclass

import json

import sys

(@dataclass

class BookData:

"""DTO nias maHHbIX KHATH"""
1d: int
title: str
author: str
description: str = ""
keywords: List[str] = None
category: str ="
year: int = 0

isbn: str=""

def post init (self):
if self.keywords is None:
self.keywords = []

class BookSimilarityAnalyzer:

nmn

AHaHI/I3aTOp CXOXCCTH KHHUT - CIICHHUAJIBHO C HpO6H€MaMI/I IJIAA aHaJIn3a MCTPUK

def init (self, config: Optional[Dict] = None):
self.config = config or {}
self. cache = {}
self. stats = {
'comparisons': 0,
'cache hits': 0,
'processing_time': 0
b
self. stop words = self. load stop words()

self. similarity threshold = self.config.get('threshold', 0.7)

def load stop words(self) -> Set[str]:
"""3arpy3ka CTOMN-CJIOB (3)KECTKO 3aKOIMPOBAHO JJIsl ipuMepa)""
return {

LB P B | LI [P B [B LI S B |

I/I B, BO He I-ITO OH Ha a, C, CO KaK a, TO BCG OHa

LI NS B s

'Tak’, 'ero', 'vo', 'na’, 'tel', ', 'y', "xe', 'BoI', '3a', '0bI', 'm0, 'TONBKO', '€,
'MHe', '0bU10', 'BOT', '0T', 'MeHst', 'emie’, 'Het', '0', 'u3', 'emy’, 'Teneps', 'koraa',
'naxe', 'ny', 'Bapyr', 'nu', 'ecnut’, 'yxe', 'unu', 'uu', '0b1T8', '0611', 'HETO', 'O,
'Bac', 'HMOYB', 'onATh, 'yK', 'BaM', 'Benp', 'TaM', 'motoM', 'cebs’, 'HUUero', 'eit’,
'MoxeT', 'onu', 'TyT', 'Tae', 'ects', 'Hano', 'Hel', 'nus', 'Mbl', 'TeOs', 'ux', uem',
'op11a', 'cam’, 'uT00', '0€3', '0yaTO0', 'yero', 'pas’, 'toxe', 'cede’, 'mox’, 'oOyner',
"', 'toraa', 'kro', aToT', 'TOr0', 'Mmoromy’', 'aToro', 'kakoit', 'copcem', 'HuM',
'3nech', 'ITOM', 'ouH', 'mouTH', 'Moit', 'TeM', 'yToOBI', 'HEE', 'ceituac’, 'ObuH', 'Kyaa',
V3aqu| 'Bcex! 'HI/IKOF L] L] L | L] " 6' ' =~ '

, , na', 'MoxkHo', mpu', 'HakoHe1l, 'ABa’, '00', 'npyroit', 'XoTh',
1 [[L} (] " " [" " ['
nocne', 'Hax', 'oospie’, 'ToT', 'uepes', 'y, 'Hac', 'mpo', 'Becero', 'Hux', 'kakas',
'MHOr0', 'paszse’, 'tpu', 'aTy', 'Mos', 'BipoueM’, 'xopomo', 'cBoro', 'aToi', 'mepen’,
'wHorMa', 'my4mre', 'ayTe', 'ToM', 'HeNB3s', 'Takoit', 'uM', '6osee’, 'Bcerna’, 'KoHEUHO',
'Bero', 'Mexnay', 'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with',

L DS B |

'by', 'from’, 'up', 'about', 'into', 'over', 'after', 'a', 'u', 'no', 'unan', 'ecau’

def calculate similarity(self, book1: BookData, book2: BookData,
method: str = "combined") -> Dict[str, float]:

nmn

OCHOBHOI METOJ pacyeTa CX0KECTH C BHICOKOM ITUKIOMATHUYECKON CIIOKHOCTHIO

Args:
book1: IlepBast kHura
book2: Bropas kaHura
method: Merton pacdera (combined, title, author, content, jaccard, cosine,

levenshtein)

Returns:

CnoBaps ¢ pe3ysibTaTaMH CXOXECTH IO Pa3HbIM METPUKAM

cache key = f"{bookl.id} {book2.id} {method}"
if cache key in self. cache:
self. stats['cache hits'] += 1

return self. cache[cache key]

self. stats['comparisons'] += 1

results = {}

1f method == "combined" or method == "title":

results['title similarity'] = self._calculate title similarity(bookl.title, book?2.title)

if method == "combined" or method == "author":
results['author similarity'] = self. calculate author similarity(book1.author,

book?2.author)

if method == "combined" or method == "content":
1f book1.description and book?2.description:
results['content similarity'] = self. calculate content similarity(
book1.description, book2.description
)
else:

results['content similarity'] = 0.0
if method == "combined" or method == "jaccard":

results['jaccard similarity'] = self. calculate jaccard similarity(

book1.keywords, book2.keywords

if method == "combined" or method == "cosine":

results['cosine similarity'] = self. calculate cosine similarity(

book1.description, book2.description

if method == "combined" or method == "levenshtein':

results['levenshtein similarity'] = self. calculate levenshtein similarity(

bookl1 .title, book?2.title

if method == "combined":
Kombunuposannas oyenka c eecamu
weights = {
'title': 0.3,
'author': 0.25,
'content’: 0.2,
Jaccard": 0.15,
'cosine': 0.05,

'levenshtein': 0.05

combined score = 0.0

weight sum = 0.0

for metric, weight in weights.items():
metric_key = "' {metric} similarity"
if metric_key in results and results|metric_key] is not None:
if metric == 'levenshtein':
Uneepmupyem paccmosinue Jlesenumetina
score = 1.0 - results|metric_key]
else:

score = results|metric_key]

combined _score += score * weight

weight sum += weight

if weight_sum > 0:
results['combined similarity'] = combined score / weight sum
else:

results['combined similarity'] = 0.0

#ﬂ()ﬁa&me,u KamecopuuHyro OU€HKy

if results['combined similarity'] > 0.9:
results['similarity level'] ='VERY HIGH'

elif results['combined similarity'] > 0.7:
results['similarity level'] ="HIGH'

elif results['combined similarity'] > 0.5:
results['similarity level'] = 'MEDIUM'

elif results['combined similarity'] > 0.3:
results['similarity level']="LOW'

else:

results['similarity level'] ="VERY_LOW'

self. cache[cache key] = results

return results

def calculate title similarity(self, titlel: str, title2: str) -> float:
"""CnoKHBIN METOJ CpaBHEHUA Ha3BaHUU'""
if not titlel or not title2:

return 0.0

Hopmanuzayus
t1 = self. normalize text(titlel.lower())

t2 = self. normalize text(title2.lower())

iftl ==12:

return 1.0

Pazbusaem Ha cnosa
words1 = set(tl.split())
words2 = set(t2.split())

if not words1 or not words2:

return 0.0

Yoansem cmon-cnosa
words1 = {w for w in words|1 if w not in self. stop words}

words2 = {w for w in words2 if w not in self. stop words}

if not words1 or not words2:

return 0.0

Koaghgpuyuenm)Kaxkapa
intersection = len(words1.intersection(words2))

union = len(words1.union(words2))

if union == 0:

return 0.0

jaccard = intersection / union

Jlononnumenvhble nposepKu

if len(words1) == | and len(words2) == 1:
O0HO C11080 8 KAHCOOM HA3B8AHUU
word]1 = list(words1)[0]
word?2 = list(words2)[0]

if word1 in word2 or word2 in word1:

return max(jaccard, 0.8)

#Hp()(f(fplx”(l HA HAJlu4ue yuce
numbers] = set(re.findall(r"\d+', titlel))
numbers2 = set(re.findall(r"\d+', title2))

if numbers] and numbers2:
if numbers! = numbers2:

jaccard *= 0.7 # llImpag 3a paznvie wucna

/lnuna nazeanuil
lenl = len(titlel)
len2 = len(title2)

len ratio = min(lenl, len2) / max(lenl, len2) if max(lenl, len2) > 0 else 1.0

Cpeonuil kodppuyuenm

similarity = (jaccard * 0.6) + (len_ratio * 0.4)

return min(similarity, 1.0)

def calculate author similarity(self, authorl: str, author2: str) -> float:
""" CoxHbBIN MeTOJ cpaBHEeHUs aBTOpoB" "
if not authorl or not author2:

return 0.0

al = self. normalize text(authorl.lower().strip())

a2 = self. normalize text(author2.lower().strip())

ifal = a2:

return 1.0

Pazoueaem na wacmu (ums, pamunus, omuecmaeo)
partsl = al.split()
parts2 = a2.split()

if not parts1 or not parts2:

return 0.0

Ilposepka Ha unuyuasl

if len(partsl) == | and len(parts2) > 1:
al mooicem 6vimov hamunuel, a2 - NOIHLIM UMEHEM
if parts1[0] == parts2[-1]: # Cpasrusaenm ¢haniiniu

return 0.8

if len(parts2) == | and len(partsl) > 1:
if parts2[0] == parts1[-1]:

return 0.8

Kosghdpuyuenm JKaxrkapa ons mnosicecme uacmeti
setl = set(partsl)
set2 = set(parts2)

intersection = len(setl.intersection(set2))

union = len(setl.union(set2))

if union == 0;

return 0.0

jaccard = intersection / union

[Iposepra na obwue noocmpoxu

common_chars = 0

for pl in partsl:

for p2 in parts2:
if pl inp2 orp2 inpl:

common_chars += 1

substring factor = common_chars / max(len(partsl), len(parts2))

KomouruposarHwlii pe3yiomam

similarity = (jaccard * 0.7) + (substring_factor * (.3)

return min(similarity, 1.0)

def calculate content similarity(self, textl: str, text2: str) -> float:
""" C10XHBIM METOJ cpaBHEHUs coaepxkumoro"""
if not textl or not text2:

return 0.0

Hopmanuzayus
tl = self. normalize text(textl.lower())

t2 = self. normalize text(text2.lower())

if tl =—t2:

return 1.0

Pazousaem na cinosa
words1 = t1.split()
words2 = t2.split()

if not words1 or not words?2:

return 0.0

Yoansem cmon-cnosa

words1 = [w for w in words1 if w not in self. stop words]

words2 = [w for w in words2 if w not in self. stop words]

if not words1 or not words2:

return 0.0

vector] = Counter(words1)

vector2 = Counter(words2)

all words = set(vectorl.keys()).union(set(vector2.keys()))

if not all words:

return 0.0

dot_product = 0.0
norml = 0.0

norm2 = 0.0

for word in all_words:
vl = vectorl.get(word, 0)

v2 = vector2.get(word, 0)
dot product +=v1 * v2
norml += vl ** 2

norm2 +=v2 ** 2

if norml == 0 or norm2 = 0:

return 0.0

cosine = dot_product / (math.sqrt(norm1) * math.sqrt(norm?2))

J[ononumenvHvlie MempuKu
words_setl = set(words])

words_set2 = set(words2)

intersection = len(words_setl.intersection(words_set2))

union = len(words_setl.union(words_set2))

if union == 0:
jaccard = 0.0
else:

jaccard = intersection / union

J[nuna mexkcmog
lenl = len(textl)
len2 = len(text2)

len ratio = min(lenl, len2) / max(lenl, len2) if max(lenl, len2) > 0 else 1.0

Kombunuposanuas oyenka

similarity = (cosine * 0.5) + (jaccard * 0.3) + (len_ratio * (.2)

return min(similarity, 1.0)

def calculate jaccard similarity(self, listl: List[str], list2: List[str]) -> float:
"""Koaddunuent XKakkapa 1 CIUCKOB KIOUYEBBIX cI0B"""
if not listl or not list2:

return 0.0

setl = set(self. normalize text(kw.lower()) for kw in listl)

set2 = set(self. normalize text(kw.lower()) for kw in list2)

intersection = len(setl.intersection(set2))

union = len(setl.union(set2))

if union == 0;

return 0.0

return intersection / union

def calculate cosine similarity(self, textl: str, text2: str) -> float:
"""KocunycHas cxoxectb ¢ TF-IDF (ynpomennas Bepcust)"""
if not textl or not text2:

return 0.0

Hopmanuzayus
tl = self. normalize text(textl.lower())

t2 = self. normalize text(text2.lower())

iftl ==12:

return 1.0

Paszousaem na crnosa
words1 = t1.split()
words2 = t2.split()

if not words1 or not words2:

return 0.0

Yoansem cmon-cnosa
words1 = [w for w in words1 if w not in self. stop words]

words2 = [w for w in words2 if w not in self. stop words]

if not words1 or not words2:

return 0.0

Bce ynukanvHvle cn1o6a

all words = list(set(words1 + words2))

Bexmopwl wacmom
vectorl = [words1.count(word) for word in all_words]

vector2 = [words2.count(word) for word in all_words]

Kocunycnas cxooicecmo
dot_product = sum(vl * v2 for v1, v2 in zip(vectorl, vector2))
norml = math.sqrt(sum(v ** 2 for v in vectorl))

norm2 = math.sqrt(sum(v ** 2 for v in vector2))

if norml == 0 or norm2 == 0:

return 0.0

return dot_product / (norml * norm?2)

def calculate levenshtein similarity(self, strl: str, str2: str) -> float:
"""Paccrosinue JlepeniTeliHa (HopMaiuzoBaHHoe)"""
if not strl or not str2:

return 0.0

[Ipusooum K HUdCHEMY pecucmpy
sl = strl.lower()

s2 = str2.lower()

if sl ==s2:

return 0.0 # Paccmosnue 0

lenl = len(s1)
len2 = len(s2)

Cozoaem mampuyy

matrix = [[0] * (len2 + 1) for _in range(lenl + 1)]

for 1 in range(lenl + 1):
matrix[i][0] =1

for j in range(len2 + 1):
matrix[0][j] =

3anoansem mampuyy
for 1 in range(1, lenl + 1):
for j in range(1, len2 + 1):
cost =0 if sl1[i-1] ==s2[j-1] else 1
matrix[i][j] = min(
matrix[i-1][j] + 1, # Voarenue
matrix[1][j-1]+ 1, # Bemaesra

matrix[i-1][j-1] + cost # Janena

distance = matrix[lenl][len2]

max_len = max(lenl, len2)

if max_len == 0:

return 0.0

return distance / max_len

def normalize text(self, text: str) -> str:

nmnn

"""HopMaynm3aius TeKCcTa

if not text:

nn

return

Yoansem nynkmyayuio

"nn

text = text.translate(str.maketrans(", ", string.punctuation))

3amensiem mHodxcecmeernHvie 1'1[7()68,76[HA OOUH

text = re.sub(r'\s+', ' ', text)

return text.strip()

def find similar books(self, target book: BookData,
book list: List{BookData],
threshold: float = 0.7,
max_results: int = 10) -> List[Tuple[BookData, Dict([str, float]]]:

nmn

[TorCK MOXO0XUX KHHT - CJIOKHBIH METOJT C BIIOYKCHHBIMH ITUKJIAMH U YCIOBHSIMH
mnmn
if not book_list:

return []

results =[]

for book in book_list:
if book.id == target book.id:

continue

[Iponyckaem KHueu 6e3 HeoOX0OUMbBIX OAHHBIX
if not book:.title or not book.author:

continue

bvicmpas npoeepka no asmopy
author sim = self. calculate author similarity(target book.author, book.author)
if author sim < 0.3: # Eciu asmopwl coscem paszHvle, nponyckaem

continue

Ilonnwviu pacuem cxodcecmu

similarity = self.calculate_similarity(target book, book, "combined")

combined_score = similarity.get('combined similarity', 0.0)

if combined_score >= threshold:

results.append((book, similarity))

Copmupogka no yovl8anuw cxoxcecmu

results.sort(key=lambda x: x[1].get('combined similarity', 0), reverse=True)

Oepanuuenue Koauuecmea pe3yibmamos
if max_results > 0 and len(results) > max_results:

results = results[:max_results]

return results

def get recommendations(self, user books: ListfBookData],
all books: List{BookData],
user preferences: Optional[Dict] = None) -> List[BookData]:

['enepanust pekOMeEH 1AM HA OCHOBE CX0KECTH

if not user_books or not all books:

return []
preferences = user preferences or {}
Cobupaem oyeHKu cxodxcecmu 01 8CeX KHU2 NONb308AMeNs

book scores = defaultdict(float)
book counts = defaultdict(int)

for user book in user books:
similar books = self.find similar books(
user _book, all books,
threshold=preferences.get('similarity threshold', 0.6),

max_results=20

for similar book, similarity data in similar books:

score = similarity data.get('combined similarity’, 0)

Yuumovieaem npeonoumenus noivzosamens
if preferences.get('prefer same author', False):
author sim = similarity data.get('author similarity', 0)

score *= (1.0 + author sim * 0.5)

if preferences.get('prefer same category', False) and user book.category:
if user book.category == similar book.category:

score *= 1.3

Yuumvieaem 200 uzoanus

if preferences.get('prefer recent', False) and similar_book.year:
current_year = 2024 # Moowcro nonyuums uz datetime
age = current_year - similar_book.year
if age <=5: # Knueu ne cmapwe 5 nem

score *=1.2

book scores[similar book.id] += score

book counts[similar book.id] += 1

y(jl/l[)(le.ll KHUZ2U, Koniopale yatce ecnib)y nojib3o6dnieiisi

user book ids = {book.id for book in user books}

Boluucnsem cpedHue oyeHKu
recommendations = []
for book in all books:

if book.id in user book ids:

continue

if book.id in book scores and book counts[book.id] > 0:

avg_score = book scores[book.id] / book counts[book.id]

Ilopoe pexomenoayuu
if avg_score >= preferences.get('recommendation threshold', 0.5):

recommendations.append((book, avg score))

C()[)I?’lllp()(ik'd no }f’(jbl(i(l/llll() OUEHKU

recommendations.sort(key=lambda x: x[1], reverse=True)

Ozcpanuyenue Koaudecmea peKomeHoayuul
max_recs = preferences.get('max recommendations', 10)
if max_recs > 0 and len(recommendations) > max_recs:

recommendations = recommendations[:max_recs|

return [book for book, in recommendations]

def get statistics(self) -> Dict[str, Any]:
"""TTosryyeHue cTaTUCTUKH pabOThl aHanu3aropa"""
return {
'total comparisons': self. stats['comparisons'],
'cache hits': self. stats['cache hits'],
'cache size': len(self. cache),
'cache hit rate': (self. stats['cache hits'] / self. stats['comparisons'])

if self. stats['comparisons'] > 0 else 0

}

similarity/metrics_calculator.py

python

mnmn

KanpkynsiTop METpUK KadecTBa JJIsl aHAIIU3a KOJIa - HAMEPEHHO CJIOKHBIM

mnmn

import math
import statistics
from typing import List, Dict, Any, Tuple, Optional

from collections import defaultdict

class CodeMetricsCalculator:

nmn

Kinacc AJIA pacucTa MCTPUK KAaUCCTBaA KOJa

CHGHI/IaJ'II)HO COICPIKUT CJIOKHBIM KO JIJIs aHaJIn3a

nmn

def it (self):
self.metrics_cache = {}

self.history =[]

def calculate all metrics(self, code data: Dict[str, Any]) -> Dict[str, float]:

LARAAL

OcHoBHOM MCTO pacdCTa BCCX MCTPHK - BBICOKAA HUKIIOMATHYCCKAasA CIIOKHOCTD

LARAAL

if not code data:

return {}

results = {}

Mempuxu pazmepa
if 'lines' in code data:

results['total lines'] = code datal'lines']

if 'comments' in code data:
results['comment density'] = (
code data['comments'] / code data['lines'] * 100

if code data['lines'] > 0 else 0

Mempuku crosxcnocmu
if "functions' in code data:

results['function count'] = len(code_data['functions'])

complexities = []
for func in code data['functions']:
if 'complexity' in func:

complexities.append(func['complexity'])

if complexities:
results['avg complexity'] = statistics.mean(complexities)
results['max complexity'] = max(complexities)
results['min _complexity'] = min(complexities)
results['complexity std'] = statistics.stdev(complexities) if len(complexities) > 1

else 0

Oyenxa kauecmsa no ClOHCHOCMU

if results['avg complexity'] < 5:
results['complexity rating'] ='EXCELLENT'

elif results['avg complexity'] < 10:
results['complexity rating'] ='GOOD'

elif results['avg complexity'] < 20:

results['complexity rating'] ='FAIR'
else:

results['complexity rating'] = 'POOR'

Mempuxu cesznocmu
if 'classes' in code data:

results['class count'] = len(code data['classes'])

methods per class =[]
for cls in code data['classes']:
if 'methods' in cls:

methods per class.append(len(cls['methods']))

if methods per class:
results['avg methods per class'] = statistics.mean(methods per class)

results['max methods per class'] = max(methods per class)

if results['avg methods per class'] <5:
results['cohesion rating'] = "HIGH'

elif results['avg methods per class'] < 10:
results['cohesion_rating'] = "'MEDIUM'

else:

results['cohesion rating'] = 'LOW'

Mempuku nacneoosamnus

if 'inheritance depth'in code data:
depth = code data['inheritance depth']
results['inheritance depth'] = depth

if depth == 0:
results['inheritance rating'] = 'NO INHERITANCE'
elif depth == 1:

results['inheritance rating'] ='SHALLOW'
elif depth == 2:

results['inheritance rating'] = 'MODERATE'
else:

results['inheritance rating'] = 'DEEP

MelanlKll C6A3aHHoOCmMuU
if 'dependencies' in code data:
deps = code data['dependencies']

results['dependency count'] = len(deps)

if results['dependency count'] < 3:
results['coupling rating'] = "LOW'

elif results['dependency count'] < 7:
results['coupling_rating'] = MEDIUM'

else:

results['coupling rating'] = 'HIGH'

Unoexc noooepoicusaemocmu
if all(key in results for key in ['avg complexity', 'total lines', 'dependency count']):
mi = self._calculate_maintainability index(
results['avg complexity'],
results|'total lines'],
results['dependency count'],
results.get('comment density', 0)

)

results['maintainability index'] = mi

if mi > 85:
results['maintainability rating'] ='EXCELLENT'
elif mi > 65:

results['maintainability rating'] ='GOOD'

elif mi > 45:
results['maintainability rating'] = 'FAIR'
else:

results['maintainability rating'] = 'POOR'

Obwasn oyenxa
if all(rating in results for rating in
['complexity rating', 'cohesion_rating', 'coupling_rating',

'maintainability rating']):

rating_scores = {
'EXCELLENT": 4,
'GOOD": 3,
'FAIR'": 2,
'POOR": 1,
'HIGH': 4,
'MEDIUM'; 2,
TOW'" 1,
'NO INHERITANCE': 3,
'SHALLOW': 4,
'"MODERATE": 3,
'DEEP": 1

total score =0

weights = {
'‘complexity rating': 0.3,
'cohesion_rating': 0.2,
'coupling_rating': 0.2,

'maintainability rating': 0.3

for rating_key, weight in weights.items():
rating = results[rating_key]
if rating in rating_scores:

total score += rating_scores[rating] * weight

results['overall score'] = total score

if total _score > 3.5:
results['overall rating'] = 'EXCELLENT'
elif total score > 2.5:
results['overall rating'] ='GOOD'
elif total score > 1.5:
results['overall rating'] = 'FAIR'
else:

results['overall rating'] = 'POOR'

Coxpansaem 6 ucmopuio
self.history.append({
'timestamp': '2024-01-15', # Moowcno ucnonvzosams datetime

'metrics': results

})

return results

def calculate maintainability index(self, complexity: float, lines: int,
dependencies: int, comment density: float) -> float:
"""PacueT uHaekca noaaepxxkuBaemoctu’""
if complexity <= 0 or lines <= 0:

return 100.0

Cl)()pduym na ocrose Halstead Volume u l;lLlK,Y().lfflal'ﬂllLlGCK()l? CJNIOIHCHOCMU

halstead volume = lines * math.log2(lines + 1) if lines > 0 else 0

mi=171.0

mi -= 5.2 * math.log(complexity + 1)

mi -= 0.23 * math.log(lines + 1)

mi -= 16.2 * math.log(halstead volume + 1)

mi += 50 * math.sin(math.sqrt(2.4 * comment_density))

Koppexmupoexa na 3aeucumocmu

mi -= dependencies * (.1

Oepanuuusaem 3HavyeHue

return max(0, min(100, mi))

defanalyze trends(self, metric_name: str, window_size: int = 5) -> Dict[str, Any]:
""" Ananu3 TpeHioB meTpuk""
if len(self.history) < 2:

return {'trend'’: 'INSUFFICIENT DATA"}

metrics data =[]
for entry in self.history[-window_size:]:
if metric_name in entry['metrics']:

metrics data.append(entry['metrics'][metric_name])

if len(metrics_data) < 2:

return {'trend': 'INSUFFICIENT DATA"}

Pacuem mpenoa

from scipy import stats

try:
x = list(range(len(metrics_data)))

slope, intercept, r_value, p_value, std err = stats.linregress(x, metrics data)

trend = 'STABLE'
if slope > 0.1:
trend = 'IMPROVING'
elif slope <-0.1:
trend = 'DETERIORATING'

return {
'trend': trend,
'slope': slope,
T squared": r_value ** 2,
'current value': metrics data[-1],
'avg value': statistics.mean(metrics_data)
b
except:
return {'trend": '"ANALYSIS ERROR'"}

similarity/text_processor.py

python

mnmn

O6paboTuuK TEKCTA JIJIs aHAJIn3a

nmn

import re

from typing import List, Set

class TextProcessor:

nmn

"""Knace qyis o0pabOTKU TeKCTa

def init (self):

self. stop words = self. load stop words()

def load stop words(self) -> Set[str]:
"""3arpyska cromn-cios"""

Ynpowennolii cnucok ons npumepa

return {

LI Py B | Vg 1Lt LI DS B |

'w', 'B', 'BO', 'HE', 'uTO', 'OH', 'HA', '1', 'C', 'cO', 'KaK', 'a', 'To', 'Bce’,

B DRI B M B | [" 1
'ona', 'tax', 'ero', 'Ho', 'na', 'tet', '«', 'y', xe', 'Bo1, '3a', '0n1', 'mo’,
'ToJIbKO', 'ee', 'MHe', '0bp110', 'BOT', 'OT', 'MeHs', 'eme’, 'HeT', '0', 'u3',
' L | " " " L | L | [} L} L} '
emMy', 'Tenieps', 'koraa', 'naxe', 'my', 'Bapyr', 'nu', 'ecnu’, 'yxe', 'unu’',
'Hu', 'ObITH', 'OBLT', 'HETO', 'N0', 'Bac', 'HMOY L', 'onATh', 'y XK', 'BaM', 'Bep,
'TaM', 'moToM', 'cebs’, 'HuUero', 'eit', 'MoxeT', 'onn’, 'TyT', 'TAC, 'eCTh',
'Hano', 'Hel', 'mid', 'Mbl', 'TeOd’, 'ux', 'ueM', '0bu1a’, 'caM’, 'uT00', '0€3',
'oynro', 'uero', 'pas’, 'toxke', 'cede’, 'mox’, 'oyner', k', 'rorna’, 'kro',

'3TOT', 'TOr0', "MmoToMYy', '3TOTO', 'KaKOH', 'cOBCEM', 'HUM', '371E€CH', 'ITOM'

def tokenize(self, text: str) -> List[str]:
"""Tokenn3zanus texkcra"""
if not text:

return []

[Ipusooum K HUdNCHEMY pecucmpy

text = text.lower()

Yoansem cneyuanvhvie cumeonvl

text = re.sub(r'[M\w\s]', ' ', text)

Pazousaem na crnosa

words = text.split()

Yoansem cmon-cnosa

words = [word for word in words if word not in self. stop words]

return words

def extract keywords(self, text: str, max keywords: int = 10) -> List[str]:

""M3BIIeYeHNE KIIFOUEBBIX CIOB U3 TEKCTA

words = self.tokenize(text)

if not words:

return []

[loocuem uacmom
from collections import Counter

word_freq = Counter(words)

it EG])@JI camble yacmsole ciloed

common_words = word freq.most common(max_keywords)

return [word for word, freq in common_words]|
2. Uuterpanus ¢ PHP-npoexTom
examples/php_integration.php
php
<?php
Vel
* Ipumep unmeepayuu Python-wooyna ¢ PHP-npoexmom

%/

class PythonSimilarityAnalyzer

{
private $pythonScriptPath;

private $pythonExecutable;

public function construct(string $pythonScriptPath = null)

{

$this->pythonScriptPath = $pythonScriptPath ?? DIR _ .'/../book-similarity';
$this->pythonExecutable = 'python3';

/**

* Bvizog Python-ananuzamopa uepe3 KOMAHOHYI0 CHPOKY

*/
public function analyzeSimilarity(array $book1, array $book2): array
{
$data =[

'book1' => $bookl,
'book2' => $book?2,
'action' => 'analyze'

I;

$jsonData = json_encode($data, ISON UNESCAPED UNICODE);
$jsonDataEscaped = escapeshellarg($jsonData);

$command = sprintf(
'%s -c¢ "import sys; sys.path.append(\'%s\"); from examples.standalone analyzer
import main; main()" --json %s',
$this->pythonExecutable,
$this->pythonScriptPath,
$jsonDataEscaped

);

$output = shell _exec($command);

if (!$output) {

return ['error' => 'Python script execution failed'];

return json_decode($output, true) ?? ['error' => 'Invalid JSON response'];

Sk
* [louck noxoscux KHue
*/
public function findSimilarBooks(int $bookld, array $bookList, float $threshold = 0.7):
array
{
$data =[
'action' => 'find_similar’,
'book id' => $bookld,
'books' => $bookList,
'threshold' => $threshold

I;

$jsonData = escapeshellarg(json_encode($data, JSON UNESCAPED UNICODE));

$command = sprintf(
'%s -c¢ "import sys; sys.path.append(\'%s\"); from examples.standalone analyzer
import main; main()" --json %s',
$this->pythonExecutable,
$this->pythonScriptPath,
$jsonData

);

$output = shell exec($command);

return $output ? json decode(Soutput, true) : [];

/**

* ['enepayusi pekomeHoayutl
*/
public function getRecommendations(array S$userBooks, array $allBooks, array
$preferences = []): array
{
$data = [
'action' => recommend’,
'user_books' => $userBooks,
'all_books' => $allBooks,

'preferences' => $preferences

I;
$jsonData = escapeshellarg(json_encode($data, ISON UNESCAPED UNICODE));

$command = sprintf(
'%s %s/examples/standalone analyzer.py --json %s',
$this->pythonExecutable,
$this->pythonScriptPath,
$jsonData

);
$output = shell exec($command);

return $output ? json decode(Soutput, true) : [];

Sk
* Ananuz mempuk kooa PHP-knaccos
*/

public function analyzeCodeMetrics(string $phpCode): array

{
$data = [

'action' => 'analyze metrics',
'php_code' => $phpCode
I;

$tempFile = tempnam(sys_get temp_dir(), 'php_code ');
file put contents($tempFile, json encode($data));

$command = sprintf(
'%s %s/examples/code analyzer.py --input %s',
$this->pythonExecutable,
$this->pythonScriptPath,
escapeshellarg($tempFile)

);

$output = shell_exec($command);

unlink($tempFile);

return $output ? json decode(Soutput, true) : [];

// [Ipumep ucnonvzosanus 6 PHP-npoexme

$analyzer = new PythonSimilarity Analyzer();

// Ananuz cxoxcecmu 08yX KHU2
$bookl = [
id'=>1,
'title' => 'TIporpammupoBanue Ha PHP',
'author' => 'MBanos 1.11.',
'description' => 'Kuura o nporpammupoBanuu va PHP',

'keywords' => ['php', 'mporpammupoBanue’, 'web']

$book2 = [
d'=> 2,
'title' => 'PHP 14 naunHarommx',
'author' => 'MBanoB MBaH',
'description' => 'BBenenue B mporpammupoBanue Ha PHP',

'keywords' => ['php', 'Hauano', mporpammupoBanue']

$similarity = $analyzer->analyzeSimilarity($book1, $book?2);

echo "Cxoxectp kHur: " . json _encode($similarity, JSON PRETTY PRINT |
JSON_UNESCAPED UNICODE);
examples/standalone analyzer.py

python
#!/usr/bin/env python3

nmn

Cxpunr s 3amycka u3 PHP yepe3 komangHyto cTpoky
import json
import sys

import os

Jlobaensiem nymo K MOOYIO

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__ file))))

from similarity.analyzer import BookSimilarityAnalyzer, BookData

def main():

LARARL

"""OcHoBHas GYHKIUS IS 3aITyCKa U3 KOMaHIHON CTPOKHU

import argparse

parser = argparse.ArgumentParser(description="AHann3aTop cxoxecT KHUT")
parser.add argument('--json', type=str, help="JSON nanusie s ananmza')
parser.add argument('--action', type=str, default="analyze',

choices=['analyze', 'find_similar', 'recommend'])

args = parser.parse_args()

if args.json:
data = json.loads(args.json)
action = data.get('action’, 'analyze')
else:
Umenue us stdin
input_data = sys.stdin.read()
if input_data:
data = json.loads(input_data)
action = data.get('action’, 'analyze")
else:
print(json.dumps({'error': 'No input data provided'}))

return

analyzer = BookSimilarityAnalyzer()

if action == 'analyze":
Ananusz cxoorcecmu ()()’Jf’,\" KHUC
bookl data = data.get('book1’, {})
book2 data = data.get('book2', {})

book1 = BookData(
id=book1 data.get('id", 0),
title=book1 data.get('title’, "),

author=book1 data.get(‘author’, "),
description=book1 data.get('description’, "),
keywords=book1 data.get('keywords', []),
category=book1 data.get('category', "),
year=book1 data.get('year', 0),

isbn=book1 data.get('isbn', ")

book2 = BookData(
1d=book?2 data.get('id", 0),
title=book2 data.get('title’, "),
author=book2 data.get('author', "),
description=book2 data.get('description’, "),
keywords=book?2 data.get('keywords', []),
category=book2 data.get('category’, "),
year=book2 data.get('year', 0),
isbn=book2 data.get('isbn', ")

similarity = analyzer.calculate similarity(bookl, book?2, "combined")

print(json.dumps(similarity, ensure_ascii=False))

elif action == 'find_similar":

target id = data.get('book 1d")

book list data = data.get('books', [])
threshold = data.get('threshold’, 0.7)

target book = None
all books =[]

for book data in book list data:
book = BookData(

1d=book data.get('id', 0),
title=book data.get('title', "),
author=book data.get('author’, "),
description=book data.get('description’, "),
keywords=book data.get('keywords', []),
category=book data.get('category’, "),
year=book data.get('year’, 0),
isbn=book data.get('isbn’, ")

if book.id == target id:
target book = book

all books.append(book)

if not target _book:
print(json.dumps({'error': "Target book not found'}))

return

similar books = analyzer.find similar books(target book, all books, threshold)

result = []
for similar_book, similarity data in similar_books:
result.append({
'book': {
'1d": similar_book.id,
'title': similar_book title,
'author': similar book.author

I8

'similarity': similarity data

P

print(json.dumps(result, ensure ascii=False))

elif action == 'recommend:

user books data = data.get(‘'user books', [])
all books data = data.get('all books', [])

preferences = data.get('preferences’, {})

user books =[]
for book data in user books data:
user books.append(BookData(
1d=book data.get('id", 0),
title=book data.get('title’, "),
author=book data.get(‘author’, "),
description=book data.get('description’, "),
keywords=book data.get('keywords', []),
category=book data.get('category’, "),
year=book data.get('year’, 0),
isbn=book data.get('isbn', ")
)

all books =[]
for book data in all books data:
all_books.append(BookData(

1d=book data.get('id', 0),
title=book data.get('title’, "),
author=book data.get(‘author’, "),
description=book data.get('description’, "),
keywords=book data.get('keywords', []),

rn

category=book data.get('category’, "),

year=book data.get('year’, 0),
isbn=book data.get('isbn’, ")
)

recommendations = analyzer.get recommendations(user books, all books,

preferences)

result = []
for book in recommendations:
result.append({

'1d": book.id,
'title": book.title,
'author': book.author,
'category': book.category,
'vear': book.year

1)

print(json.dumps(result, ensure ascii=False))

else:

print(json.dumps({'error': fUnknown action: {action}'}))

' '

if name ==' main "
main()

3. TecTsl Aast MOy

tests/test_analyzer.py

python

import unittest

import sys

import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__ file))))

from similarity.analyzer import BookSimilarityAnalyzer, BookData

class TestBookSimilarityAnalyzer(unittest. TestCase):

def setUp(self):
self.analyzer = BookSimilarityAnalyzer()

self.book1 = BookData(
id=1,
title="IIporpammupoBanue Ha Python",
author="Mganos 1.11.",
description="Knwura o nmporpaMmmupoBanunu Ha sizbike Python",

"nn "non

keywords=["python", "nmporpammupoBanue", "koxa'"],
category="I1IporpammupoBanue",
year=2020,

isbn="978-5-4461-1234-5"

self.book2 = BookData(
id=2,
title="Python nnsa HaunHaromux",
author="HBanoB NBan MBanoBuu",
description="BBenenue B mporpammupoBanue Ha Python",
keywords=["python", "naugano", "oOyuenue"],
category="I1IporpammupoBanue",

year=2021,
1sbn="978-5-4461-5678-9"

self.book3 = BookData(
1id=3,
title="Wctopus Poccun",
author="Ilerpos [1.I1.",
description="Ilonnas ncropus Poccun",

"nn "nn

keywords=|["uctopus", "poccus", "ctpana'],
category="Vcropusa",
year=2015,

1sbn="978-5-271-2345-6"

def test_title similarity identical(self):
similarity = self.analyzer.calculate similarity(self.bookl, self.bookl, "title")
self.assertIn('title similarity', similarity)

self.assertEqual(similarity['title similarity'], 1.0)

def test title similarity similar(self):
similarity = self.analyzer.calculate similarity(self.bookl, self.book2, "title")
self.assertIn('title similarity', similarity)

self.assertGreater(similarity|['title similarity'], 0.5)

def test title similarity different(self):
similarity = self.analyzer.calculate similarity(self.bookl, self.book3, "title")
self.assertIn('title similarity', similarity)

self.assertLess(similarity['title similarity'], 0.3)

def test author similarity identical(self):
similarity = self.analyzer.calculate similarity(self.bookl, self.bookl, "author")
self.assertIn(‘author similarity', similarity)

self.assertEqual(similarity['author similarity'], 1.0)

def test author similarity similar(self):

similarity = self.analyzer.calculate similarity(self.book1, self.book2, "author")
self.assertIn('author similarity’, similarity)

self.assertGreater(similarity['author similarity'], 0.7)

def test content similarity(self):
similarity = self.analyzer.calculate similarity(self.bookl, self.book2, "content")
self.assertIn('content similarity’, similarity)

self.assertGreater(similarity['content similarity'], 0.0)

deftest jaccard similarity(self):
similarity = self.analyzer.calculate similarity(self.bookl, self.book2, "jaccard")
self.assertIn(‘jaccard similarity', similarity)

self.assertGreater(similarity['jaccard similarity'], 0.0)

def test combined similarity(self):
similarity = self.analyzer.calculate similarity(self.bookl, self.book2, "combined")
self.assertIn('combined similarity’, similarity)
self.assertIn('similarity level', similarity)

self.assertGreater(similarity['combined similarity'], 0.0)

def'test find similar books(self):
books = [self.book1, self.book?2, self.book3]

similar _books = self.analyzer.find similar books(self.book1, books, threshold=0.5)

self.assertGreater(len(similar books), 0)

found book?2 = False
for book, similarity in similar_books:
if book.id == self.book2.1d:
found book2 = True

self.assertGreater(similarity.get('combined similarity’, 0), 0.5)

break
self.assertTrue(found book2, "Book 2 should be found as similar to Book 1")
def test get recommendations(self):
user_books = [self.book1]

all books = [self.book]1, self.book?2, self.book3]

recommendations = self.analyzer.get recommendations(user books, all _books)

self.assertEqual(len(recommendations), 1)

self.assertEqual(recommendations[0].id, self.book2.id)

def'test cache functionality(self):

similarityl = self.analyzer.calculate similarity(self.book1, self.book2, "combined")

similarity2 = self.analyzer.calculate similarity(self.book1, self.book2, "combined")

stats = self.analyzer.get statistics()

self.assertGreater(stats['cache hits'], 0)

def test empty input(self):
empty book = BookData(id=0, title="", author="")
similarity = self.analyzer.calculate similarity(empty book, self.bookl1, "combined")
self.assertIn('combined similarity', similarity)

self.assertEqual(similarity['combined similarity'], 0.0)

if name ==' main "
unittest.main()

tests/test_integration.py

python

import unittest

import json

import tempfile

import os

import sys

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__ file))))

from examples.standalone analyzer import main

class TestIntegration(unittest. TestCase):

def test _standalone analyzer stdin(self):
"""TectupoBanue paboTsl uepes stdin"""
test data = {
'action'; 'analyze',
'book1": {
d': 1,
'title': '"Test Book 1',
'author": 'Author One',
'description': '"Test description one'
s
'book2": {
"id'": 2,
'title': '"Test Book 2',

'author": 'Author Two',

'description': '"Test description two'

Cozoaem epemennblil aill ¢ mecmosvlMu OAHHLIMU
with tempfile. Named TemporaryFile(mode='w', suffix="json', delete=False) as f:
json.dump(test data, f)

temp_file = f.name

try:
Yumaem oannvle u3z gauna kax 6wl us stdin
import 10

from contextlib import redirect stdout

with open(temp _file, 't'") as f:
input_data = f.read()

3axeamuvleaem 6v1600
output = 10.StringlO()
with redirect _stdout(output):
Umumupyem 6v1306 main ¢ OaHHbIMU

import argparse

class Args:
json = None

action = 'analyze'

args = Args()

B peanvHom mecme HYHCHO MOKUPOBAMb SYS.Stdin
import sys
original stdin = sys.stdin

sys.stdin = 10.StringlO(input_data)

try:
main()
finally:

sys.stdin = original stdin

result = output.getvalue()

IIposepsiem, umo pezyromam - anuonwvi JSON
parsed result = json.loads(result)

self.assertIn('combined similarity', parsed result)

finally:
os.unlink(temp_file)

if name ==' main "
unittest.main()

4. ®aibl KOHpUrypauuu

setup.py

python
from setuptools import setup, find packages

setup(
name="book-similarity-analyzer",
version="1.0.0",
author="Smart Library Team",
description="Python module for book similarity analysis (for integration with PHP)",
packages=find packages(),
install requires=|

Munumanvuwsle 3a8ucumocmu

extras require={

'dev'": [
pytest>=7.0.0",
pytest-cov>=4.0.0",
'flake8>=6.0.0",
'pylint>=3.0.0",
‘mypy>=1.0.0',

I,

'analysis': [

'scipy>=1.10.0", # [{na cmamucmuuecxozo ananusa

"numpy>=1.24.0", # /[na uuciennvix pruucieHut

]
}s
python requires=">=3.8",

classifiers=|

"Development Status :: 4 - Beta",

"Intended Audience :: Developers",

"Topic :: Software Development :: Libraries

"Programming Language ::
"Programming Language ::
"Programming Language ::
"Programming Language ::

"Programming Language ::

)

requirements.txt

OCHOBHBIE 3aBUCUMOCTH

Python ::

Python
Python
Python
Python

3,
2 3.8",
2 3.9",
2 3.10",
311",

:: Python Modules",

(MOXHO OCTaBUTb MYCTHIM JIJI1 MUHUMAJIbHON YCTaHOBKH)

JlomoJHUTEIbHBIC 3aBUCUMOCTH 151 aHAJI13a

scipy>=1.10.0
numpy>=1.24.0

JlonoJIHUTEbHBIE 3aBUCUMOCTH JIJI1 TECTUPOBAHUS
pytest>=7.0.0
pytest-cov>=4.0.0
flake8>=6.0.0
README.md
markdown
Book Similarity Analyzer (Python Module)
Monyns Ha Python i aHanu3a CXOXECTH KHWI, NpeIHA3HAYCHHBIH is
unrerpaunu ¢ PHP-npoexrom "Ywmuas oubnauorexa'.
OcoOEHHOCTH
- AHanu3 CXO0XKECTU KHUT 10 Ha3BAHUIO, aBTOPY, COJEPKAHUIO U KITFOUEBBIM CIIOBaM
- Heckonbko anroputmoB cpaBHeHMs (JKakkapj, KOCHHYCHas CXOXECTb, PACCTOSHUE
JleBeHiTeiiHa)
- 'eneparus pekoMeHalMil HA OCHOBE CXOKECTH
- KsmmpoBanue pe3ynbTaToB Jisl IPOU3BOJIUTEILHOCTH
- CnienanabHO COAEPKUT "MPOOIEMHBIN" KO JIJIsl aHAIM3a METPUKAMU
Nurerpanus ¢ PHP
Monynb MoxeT ObITh BbI3BaH u3 PHP depe3 koMaHIHYIO CTPOKY:
php
$analyzer = new PythonSimilarityAnalyzer();
$similarity = $analyzer->analyzeSimilarity($book1, $book?2);
YcranoBka
. Kimonnposate Moayns B nupexropuro PHP-npoekra
. YcranoButb Python 3.8 wnu BeIe
. (OnuunonanbHO) Y cTaHOBUTH 3aBUCUMOCTH: pip install -r requirements.txt
Crpykrypa Moayas

book-similarity/

|— similarity/ # OCHOBHOM KOJ MOAYJIA
I— tests/ # TecThl

|— examples/ # Ilpumepbl CTOJBL30BAHUS
L— setup.py # Konduryparnus nakera

HUcnoan3oBanue B PHP

php
// Co30anue ananuzamopa

$analyzer = new PythonSimilarityAnalyzer('/path/to/book-similarity");

// Ananuz cxoocecmu 08yX KHue

$similarity = $analyzer->analyzeSimilarity($book1, $book?2);

// Tlouck noxoarcux knuz

$similarBooks = $analyzer->findSimilarBooks(123, $bookList, 0.7);

// I'enepayus pexomenoayuil

$recommendations = $analyzer->getRecommendations($userBooks,
$preferences);

TecTupoBanue

bash

3anyck ecex mecmog

python -m pytest tests/

3anyck mecmog ¢ nokpvimuem

python -m pytest --cov=similarity tests/

[Iposepxa cmuns kooa

flake8 similarity/

pylint similarity/

Oco0eHHOCTH 1JIS1 AaHAJIN3A METPUK

Moaynb crienuanbHO CONEPKUT:

BBICOKYIO IMKIIOMAaTHYECKYIO CIOKHOCTh METOJI0B
JlybnupoBanue Koaa

Cno>xHbIE BIIOKEHHBIE YCIIOBUS

JImuHHBIE METO B

CuibHYIO CBSI3aHHOCTD

3TO NO3BOJISIET UCIOIB30BATH €T0 JIJIsl O0YUEHHS aHAIM3Y METPUK KOJIa.

$allBooks,

Otot Python-Momynbp MOXKHO JIeTKO UHTErpUpoBaTh B cymiecTBytomuii PHP-npoext
yepe3 BbI30B KOMAaHAHOW CTPOKH. MoOJysb BBINOJIHAET MOJE3HYIO (YHKUHUIO (aHaIu3
CXO0’KECTU KHHT) U IIPU ATOM COAEPKUT HAMEPEHHbIE NMPOOJIEMBI JUIsl aHAJIN3a METPUKAMU,

YTO JIENAET €T0 HICATbHBIM JIJIsl yIeOHBIX IIeTIeH.

CocraBurenb
BurBunkuit Makcum Hukosaesua

MeTtonnueckue ykazaHus MO BBIMIOJTHEHUIO CAMOCTOSITEIbHON PabOThI
JUTSL CTYZIEHTOB OYHOUM (hOpMBI OOyUEHHUSI
10 HAMPABJICHUIO CTICIIMAILHOCTH
09.02.07 «udopmarimoHHbIe CUCTEMBI M IPOTPAMMUPOBAHUE)

[IybnuKkyercs B aBTOPCKON pelakuu

		2026-02-18T11:16:19+0700
	Долганова Жанна Александровна

