МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Т.Ф.ГОРБАЧЕВА» Филиал КузГТУ в г. Белово

УТВЕРЖДАЮ 17.01.2023 г. Директор филиала КузГТУ в г. Белово И.К. Костинец

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Приложение к рабочей программе по дисциплине

РАСЧЕТ И МОДЕЛИРОВАНИЕ ГОРНЫХ МАШИН И ОБОРУДОВАНИЯ

Специальность 21.05.04 «Горное дело» Специализация 09 «Горные машины и оборудование»

Присваиваемая квалификация «Горный инженер (специалист)»

Форма обучения очно-заочная

год набора 2022

Составитель: доцент В.Ф. Белов

Обсуждено на заседании кафедры «Горного дела и техносферной безопасности»

Протокол № <u>6</u> от <u>14 января 2</u>023 г.

Зав. кафедрой В.Ф. Белов

Согласовано учебно-методической комиссией по специальности 21.05.04 «Горное дело»

Протокол № 3 от 17 января 2023 г.

Председатель учебно-методической комиссии В.В. Аксененко

СОДЕРЖАНИЕ

1. Назначение фонда оценочных средств	.4
2. Паспорт компетенций дисциплины	.4
3. Паспорт фонда оценочных средств	
4. Входной контроль	.7
4.1 Цель входного контроля	.7
4.2 Описание оценочных средств	.7
4.2.1 Шкала оценивания	.7
4.2.2 Задания (вопросы) для входного контроля обучающихся	.8
5 Текущий контроль по дисциплине	.13
5.1 Комплект тестовых заданий для текущего контроля	.13
5.1.1. Критерии и шкала оценивания	.13
5.1.2 Материалы тестовых заданий	.14
5.2 Практические работы по дисциплине	.15
5.2.1 Критерии и шкала оценивания	.15
5.2.2 Материалы для выполнения практических заданий	.15
5.3 Самостоятельная работа по дисциплине	
6. Промежуточная аттестация по дисциплине	.17
6.1 Критерии и шкала оценивания	.17
6.2 Материалы для проведения промежуточной аттестации	
6.3 Система оценивания	17
6.4 Процедура выполнения и проверки теста	17
6.5 Дополнительные материалы	18

1. НАЗНАЧЕНИЕ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств (ФОС) создается в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования для аттестации обучающихся на соответствие их учебных достижений поэтапным требованиям соответствующей ОПОП для проведения входного и текущего оценивания, а также промежуточной аттестации обучающихся. ФОС является составной частью нормативнометодического обеспечения системы оценки качества освоения ОПОП ВО, входит в состав ОПОП. ФОС – комплект методических материалов, нормирующих процедуры оценивания результатов обучения, т.е. установления соответствия учебных достижений запланированным результатам обучения и требованиям образовательных программ, программ учебных дисциплин (модулей).

ФОС сформирован на основе ключевых принципов оценивания:

- валидности: объекты оценки должны соответствовать поставленным целям обучения;
- надежности: использование единообразных стандартов и критериев для оценивания достижений;
- объективности: разные обучающиеся должны иметь равные возможности добиться успеха.
 ФОС по дисциплине «Расчет и моделирование горных машин и оборудования» включает все виды оценочных средств, позволяющих проконтролировать освоение обучающимися компетенций, предусмотренных ФГОС ВО по специальности 21.05.04. «Горное дело» и программой учебной дисциплины «Расчет и моделирование горных машин и оборудования».
 ФОС предназначен для профессорско-преподавательского состава и обучающихся филиала КузГТУ в г.Белово. ФОС подлежит ежегодному пересмотру и обновлению.

2.ПАСПОРТ КОМПЕТЕНЦИЙ ДИСЦИПЛИНЫ

- 1.Определение, содержание и основные сущностные характеристики компетенций **ПК-6.**
- 2. Дисциплина: Расчет и моделирование горных машин и оборудования
- 3. Описание показателей и критериев оценивания уровней приобретенных компетенций на различных этапах их формирования

Показатели и критерии оценивания уровня приобретенных компетенций по дисциплине Расчет и моделирование горных машин и оборудования

Результаты изучения дисциплины

т езультаты изучения дисциплины				
	Часть	Показатели компетенций		
Компетенции	контролир			
из ФГОС	уемой			
из ФГОС	компетенц			
	ии			
1	2	Знать	Уметь	Владеть
1	2	3	4	5
ПК-6 -	полность	основные принципы	работать с	современными
Владеет	Ю	построения 3D	программными	вычислительными
навыками		моделей для задач	продуктами	программами для
проектировани		проектирования и	специального	проведения различных
Я,		эксплуатации машин,	назначения для	видов конечно-
конструирован		основы метода	проведения	элементного анализа и
ия и		конечных элементов.	прочностных и	представления
модернизации			модальных	результатов;
горных машин			анализов	основными приемами
И			конструкций	для повышения
оборудования			горных машин;	прочности и изменения
			строить	частот собственных
			твёрдотельные	колебаний
			модели	конструкций.
			для описания	
			различных	
			конструкций,	
			осуществлять	
			различные виды	
			их анализа и	
			представлять	
			полученные	
			результаты в	
			удобном для	
			анализа виде	

3. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ АТТЕСТАЦИИ по дисциплине Расчет и моделирование горных машин и оборудования

1. Описание назначения и состава фонда оценочных средств Настоящий фонд оценочных средств (ФОС) входит в состав образовательной программы и предназначен для текущего и промежуточного контроля и оценки планируемых результатов обучения — знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций в процессе прохождения подготовки по дисциплине Расчет и моделирование горных машин и оборудования

	ФОС разработан на основании:
	 федерального государственного образовательного стандарта высшего образования
	равлению подготовки 21.05.04. «Горное дело»
•	
	– образовательной программы высшего образования по направлению подготовки
	21.05.04. «Горное дело»

	Направленность ((профиль) <u>«09</u>	<u>Горные</u>	машины	И
оборуд	цование»					

код и наименование направления подготовки, уровень подготовки

2. Перечень компетенций, формируемых в процессе прохождения дисциплины **ПК-6**

3. Этапы формирования и оценивания компетенций

No	Контролируемые разделы	Код	Наименов	ание
Π /	(темы)	контролируемо	оценочного с	редства
П		й компетенции	Текущий контроль	Промежуточн
		(или ее части)		ая аттестация
1.	Тема 1 Введение в методы конечных элементов. Основная идея. Терминология. Общие вопросы теории деформируемого твердого тела. Теоретические предпосылки.	ПК-6	Устный опрос выполнение заданий	
2	Тема 2. Модели поведения материалов. Области применения. Использование различными программами.		Выполнение заданий самостоятельной работы	
3	Тема 3 Современное программное обеспечение в области конечно- элементного решения задач. Возможности. Круг решаемых задач.		Выполнение заданий самостоятельной работы	
4	Тема 4. Построение 3D деталей и сборочных единиц.		Выполнение заданий самостоятельной работы	Зачет
5	Тема 5. Задание граничных условий. Разбиение моделей на конечные элементы. Задание типов сопряжений между контактирующими поверхностями.		Устный опрос выполнение заданий	
6	Тема 6. Особенности проведения прочностного анализа.		Устный опрос выполнение заданий	
7	Тема 7. Особенности проведения модального анализа.		Устный опрос выполнение заданий	
8	Тема 8 Представление результатов расчётов. Составление отчетов.		Выполнение заданий самостоятельной работы	

4. ВХОДНОЙ КОНТРОЛЬ

4.1 Цель входного контроля — определить начальный уровень подготовленности обучающихся и выстроить индивидуальную траекторию обучения. В условиях личностно-ориентированной образовательной среды результаты, полученные при входном оценивании обучающегося, используются как начальные значения в индивидуальном профиле академической успешности обучающегося.

4.2 Описание оценочных средств

Форма проведения входного контроля — бланковое тестирование. Длительность тестирования — 45 минут. Количество вопросов-30

4.2.1 Шкала оценивания (методика оценки)

За каждый правильный ответ выставляется один балл.

Оценка формируется в соответствии с критериями таблицы:

Максимальный балл	Проходной балл	Оценка
30	не менее 25	отлично
24	не менее 19	хорошо
18	не менее 13	удовлетворительно
12	_	неудовлетворительно

4.2.2 Задания (вопросы) для входного контроля обучающихся

Для освоения дисциплины необходимы компетенции (знания умения, навыки и (или) опыт профессиональной деятельности), сформированные в рамках изучения следующих дисциплин: «Инженерная графика», «Компьютерная графика», «Конструирование горных машин и оборудования», «Материаловедение», «Сопротивление материалов»

Вопросы входного контроля охватывают материалы данных дисциплин.

Перечень вопросов входного контроля

1. К вертикальным разрезам относят разрезы:

Выберите один или несколько правильных ответов:

- а) горизонтальный;
- б) профильный;
- в) наклонный;
- г) фронтальный.
- 2. Что называется видом?

Выберите один правильный ответ:

- а) Изображение видимой части поверхности предмета, обращенной к наблюдателю
- б) Изображение поверхности предмета, обращенной к наблюдателю
- 3. К неразъемному соединению относят соединения:

Выберите один или несколько правильных ответов:

- а) сварное
- б) паяное
- в) шлицевое
- г) шпоночное
- д) резьбовое
- 4. К разъемному соединению относят соединения:

Выберите один или несколько правильных ответов:

- а) сварное
- б) паяное
- в) шлицевое
- г) шпоночное
- д) резьбовое
- . 5. Указывают ли масштаб эскиза в основной надписи?

Выберите один правильный ответ:

- а) Указывают, если он стандартный
- б) Не указывают
- в) Указывают обязательно
- г) Указывают по усмотрению
- 6. Изображение элементов детали на эскизе выполняется..
- .Выберите один ответ:
- а) без указания линейных размеров элемента.
- б) согласно правилам ЕСКД.
- в) без указания угловых размеров элемента.

7. Нужны ли все размеры на рабочих чертежах детали?

Выберите один правильный ответ:

- а) Ставятся размеры диаметров
- б) Ставятся размеры, необходимые для изготовления и контроля изготовления детали
- в) Ставятся только габаритные размеры
- г) Ставятся линейные и габаритные размеры
- 8. Рабочие чертежи выполняют...

Выберите один правильный ответ:

- а) с применением чертежных инструментов в глазомерном масштабе
- б) в стандартном масштабе без применения чертежных инструментов
- в) на стандартных форматах в стандартном масштабе с применением чертежных инструментов
- г) на листах произвольных размеров, но с применением чертежных инструментов
- 9. Графическое изображение, представленное в памяти компьютера в виде описания совокупности точек с указанием их координат и оттенка цвета, называется:
- а) растровым;
- б) векторным;
- в) фрактальным;
- г) линейным.
- 10. Одной из основных функций графического редактора является:
- а) генерация и хранение кода изображения;
- б) просмотр и вывод содержимого видеопамяти;
- в) сканирование изображений;
- г) создание изображений.
- 11. Какие конструктивные элементы не подлежат унификации?
- а) Элементы привода
- б) Посадочные соединения
- в) Резьбы
- г) Шлицевые и шпоночные соединения
- 12. Цепная передача по сравнению с ременной может обеспечить...
 - а)) меньшие габариты, меньшие нагрузки на валы, отсутствие проскальзывания
 - б) большее передаточное число, меньший расход масла
 - в) большую мощность, меньшую массу
 - г) большие скорости, нагрузки, отсутствие смазки
- 13. Передача винт-гайка в основном применяется для...
 - а) соединения валов с перекрещивающимися осями
 - б) увеличения КПД
 - в) преобразования вращательного движения в поступательное
 - г) увеличения мощности
- 14. Основное кинематическое условие, которому должны удовлетворять профили зубьев зубчатой передачи...

- а) контактирование основных окружностей
- б) нарезание зубьев колёс одним и тем же инструментом
- в) постоянство радиального зазора
- г) постоянство передаточного отношения
- 15. В состав передачи входит прямозубое гибкое зубчатое колесо с внешними зубьями, что определяет большое передаточное число водной ступени и это может быть только...
 - а) в винтовой передаче
 - б) в волновой передаче
 - в) в планетарной передаче
 - г) в червячной передаче
- 16. Главными критериями работоспособности фрикционной передачи являются...
 - а) прочность, износостойкость, теплостойкость
 - б) жёсткость, мощность, прочность
 - в) прочность, жёсткость, точность
 - г) виброустойчивость, твёрдость, теплостойкость
- 17. Сила трения относится к движущим силам у
 - а) планетарной передачи
 - б) цепной передачи
 - в) червячной передачи
 - г) ремённой передачи
- 18. К статическим испытаниям не относится испытание на:
 - а) растяжение;
 - б) ударный изгиб;
 - в) сжатие:
 - г) твердость.
- 19. При измерении твердости методом Бринелля в качестве индентора используется:
 - а) алмазный конус;
 - б) алмазная пирамидка;
 - в) стальной шарик;
 - г) стальная призма.
- 20. При точечном методе оценки структуры применяется окуляр с:
 - а) линейкой;
 - б) сеткой;
 - в) царапинами;
 - г) желтым покрытием.
- 21. Марка стали У10 является:
 - а) инструментальной качественной сталью;
 - б) конструкционной сталью обыкновенного качества;

- в) : конструкционной качественной сталью;
- г) инструментальной сталью высокого качества.

22. В высокопрочном чугуне форма графита:

- а) пластинчатая;
- б) хлопьевидная;
- в) шаровидная;
- г) перистая.

23. Механическая смесь феррита и цементита называется:

- а) перлитом;
- б) аустенитом;
- в) мартенситом;
- г) ледебуритом.

24. Пересыщенный твердый раствор углерода в альфа-железе называется:

- а) ферритом;
- б) трооститом;
- в) мартенситом;
- г) сорбитом.

25 Сталь 40ХНМА является:

- а) качественной конструкционной;
- б) особо высококачественной инструментальной;
- в) высококачественной инструментальной;
- г) высококачественной конструкционной.

26. Сплав марки БрКМц 3-1 имеет состав:

- a) 96% Be, 3% Co, 1% Mn;
- б) 96%Zn, 3% Co, 1% Cu;
- в) 96% Cu, 3% Si, 1% Mn;
- г) 96% Cu, 3% Co, 1% Mn.

27. Прочность – это ...

- а) способность материала сохранять первоначальные форму и положение при действии нагрузок
- б) способность материала сохранять свои геометрические параметры в допускаемых пределах при действии нагрузок
- в) способность материала воспринимать нагрузки без разрушения
- г) способность материала восстанавливать форму и размеры при прекращении действия нагрузок

28. Механическое напряжение – это ...

- а) мера интенсивности внутренних сил, возникающих в деформируемом теле под действием нагрузок
- б) мера интенсивности нагрузок, действующих на деформируемое тело

- в) мера интенсивности реакций связей деформируемого тела, возникающих при действии нагрузок мера интенсивности сил инерции, возникающих в деформируемом теле под действием нагрузок
- 29. Слоистый пластик на основе фенолоформальдегидной смолы с наполнителем из хлопчатобумажной ткани называется:
 - а) гетинаксом;
 - б) ДСП;
 - в) асботекстолитом;
 - г) текстолитом.
- 30. Часть боковой поверхности бревна, сохранившаяся на обрезном материале, называется:
 - а) задиром;
 - б) обзолом;
 - в) ожогом;
 - г) вмятиной

5 ТЕКУЩИЙ КОНТРОЛЬ

Текущий контроль знаний используется для оперативного и регулярного управления учебной (в том числе самостоятельной) деятельностью обучающихся. Текущий контроль успеваемости осуществляется в течение семестра, в ходе повседневной учебной работы по индивидуальной инициативе преподавателя. Данный вид контроля стимулирует у обучающихся стремление к систематической самостоятельной работе по изучению дисциплины.

Обучающемуся необходимо устно ответить на два контрольных вопроса при защите практической работы.

5.1 КОМПЛЕКТ ВОПРОСОВ УСТНОГО ОПРОСА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ ПО ДИСЦИПЛИНЕ «РАСЧЕТ И МОДЕЛИРОВАНИЕ ГОРНЫХ МАШИН И ОБОРУДОВАНИЯ»

Оцениваемые компетенции ПК-6

С целью контроля подготовки обучающихся к изучению новой темы в начале каждого лекционного занятия преподавателем проводится индивидуальный или фронтальный устный опрос(по два вопроса) по выполненным заданиям предыдущей темы.

5.1.1 Критерии оценивания

- -правильность ответа по содержанию задания (учитывается количество и характер ошибок при ответе);
- -полнота и глубина ответа (учитывается количество усвоенных фактов, понятий и т.п.);
 - -сознательность ответа (учитывается понимание излагаемого материала);
- -логика изложения материала (учитывается умение строить целостный, последовательный рассказ, грамотно пользоваться специальной терминологией);
- –рациональность использованных приемов и способов решения поставленной учебной задачи (учитывается умение использовать наиболее прогрессивные и эффективные способы достижения цели);
- -своевременность и эффективность использования наглядных пособий и технических средств при ответе (учитывается грамотно и с пользой применять наглядность и демонстрационный материал, цитирование законодательства при устном ответе);
 - использование дополнительного материала (обязательное условие);
- рациональность использования времени, отведенного на задание (не одобряется затянутость устного ответа во времени, с учетом индивидуальных особенностей обучающихся).

Оценка «Отлично» ставится, если обучающийся полно и аргументированно отвечает по содержанию задания; обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только по учебнику, но и самостоятельно составленные; излагает материал последовательно и правильно.

Оценка «Хорошо» ставится, если обучающийся дает ответ, удовлетворяющий тем же требованиям, что и для оценки *«Отлично»*, но допускает 1-2 ошибки, которые сам же исправляет.

Оценка «Удовлетворительно» ставится, если обучающийся обнаруживает знание и понимание основных положений данного задания, но излагает материал неполно и допускает неточности в определении понятий или формулировке правил; не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; излагает материал непоследовательно и допускает ошибки.

Оценка «Неудовлетворительно» ставится, если обучающийся обнаруживает незнание ответа на соответствующее задание, допускает ошибки в формулировке определений и

правил, искажающие их смысл, беспорядочно и неуверенно излагает материал. Оценка «*Неудовлетворительно*» отмечает такие недостатки в подготовке обучающихся, которые являются серьезным препятствием к успешному овладению последующим материалом.

5.1.2 Материалы для проведения устного опроса

Тема 1. Введение в методы конечных элементов. Основная идея. Терминология. Общие вопросы теории деформируемого твердого тела. Теоретические предпосылки.

- 1. Основная идея использования метода конечных элементов (МКЭ). Понятие конечного элемента, узла.
- 2. Основные типы конечных элементов (КЭ).
- 3. Преимущества и недостатки криволинейных КЭ.
- 4. Этапы программной реализации МКЭ.
- 5. Назначение сгущения сетки КЭ.
- 6. Способы задания размеров сетки КЭ.

Тема 5. Задание граничных условий. Разбиение моделей на конечные элементы.

Задание типов сопряжений между контактирующими поверхностями

- 1. Виды анализов, проводимых с помощью МКЭ.
- 2. Назначение статического анализа.
- 3. Назначение динамического анализа.
- 4. Назначение кинематического анализа.
- 5. Назначение расчётов на устойчивость.

Тема 6. Особенности проведения прочностного анализа.

- 1. Основные способы построения плоских тел (эскизов).
- 2. Построение объёмных тел.
- 3. Сложение и вычитание тел.
- 4. Задание сварочных швов.
- 5. Виды сопряжения деталей (поверхностей).
- 6. Виды закрепления.
- 7. Виды внешних нагрузок.
- 8. Проведение статического анализа.
- 9. Составление отчёта о проведённых исследованиях.
- 10. Назначение модального анализа.
- 11. Понятие частоты собственных колебаний.
- 12. Понятие моды.
- 13. Понятие формы колебаний.

Тема 7 Особенности проведения модального анализа.

- 1. Назначение модального анализа.
- 2. Назначение гармонического анализа.
- 3. Назначение термического анализа.
- 4. Решение смешанных задач.
- 5. Модель поведения материала.
- 6. Диаграмма растяжения металлов.

5.2 КОНТРОЛЬНЫЕ ВОПРОСЫ ПРИ ЗАЩИТЕ ПРАКТИЧЕСКИХ РАБОТ ПО ДИСЦИПЛИНЕ «РАСЧЕТ И МОДЕЛИРОВАНИЕ ГОРНЫХ МАШИН И ОБОРУДОВАНИЯ»

Оцениваемые компетенции ПК-6

В ходе практических занятий обучающийся должен решить предлагаемые задачи, выполнить задания и проанализировать деловые ситуации по теме занятия.

5.2.1 Критерии оценивания

- 1) самостоятельность выполнения задания и работы с конспектом лекций, нормативно-правовой базой (учитывается индивидуальная работа в течение занятия, быстрота и способность нахождения необходимой информации);
- 2) правильность выполнения задания (учитывается логическая последовательность выполняемых действий, правильность математических вычислений, аккуратность оформления задания, использование нормативно-правовой базы).

Оценка формируется в соответствии с критериями:

Оценка «отлично» - полное верное выполнение задания, нет ошибок, материал представлен в полном объеме, задание выполнено рациональным способом. Ясно описан способ выполнения, сделаны выводы.

Оценка «хорошо» - задание выполнено в целом верно, в решении нет существенных ошибок, но задание выполнено неоптимальным способом или допущено не более двух незначительных ошибок, упущены некоторые данные, недостаточно подробно сделаны выволы.

Оценка «удовлетворительно» - задание оформлено неаккуратно, допущена существенная ошибка в математических расчетах или в логической последовательности выполняемых действий, которая повлияла на окончательный результат.

Оценка «неудовлетворительно» - задание содержит существенные ошибки, решение неверное или отсутствует.

5.2.2 Вопросы для защиты практической работы 1 Построение 3D деталей и сборочных единиц.

- 1. Типы моделей поведения материалов. Модели плоского напряжённого и плоского деформированного состояния.
- 2. Пластичность материала. Диаграмма растяжения металлов.
- 3. Модели представления нелинейных свойств материалов.
- 9. Эффект Баушингера при различных моделях материала.
- 4. Построение 3D деталей в Autodesk Invtntor.
- 5. Составление сборок в Autodesk Invtntor.
- 6. Формирование рабочих и сборочных чертежей в Autodesk Invtntor.

2 Задание граничных условий. Разбиение моделей на конечные элементы. Задание типов сопряжений между контактирующими поверхностями.

- . 1. Общие понятия и назначение метода конечных элементов (МКЭ).
- 2. Сетка конечных элементов. Виды элементов. Способы разбиения и задания размеров.
- 3. Виды проводимых анализов с помощью МКЭ и их назначение.
- 4. Задание граничных условий. Формирование внешних нагрузок, закреплений, сопряжений, начальных деформаций.
- 5. Понятие тензоров напряжений и деформаций.

3 Особенности проведения прочностного анализа. Представление результатов расчета.

- 1. Прочностной анализ. Назначение. Общие понятия.
- 2. Составление отчётов по результатам прочностного анализа в Autodesk Invtntor

4 Особенности проведения модального анализа. Представление результатов расчета.

- 1. Модальный анализ. Назначение. Общие понятия. Факторы, оказывающие влияние на формирование частот собственных колебаний.
- 2. Составление отчётов по результатам статического и модального анализов в Autodesk Invintor.

5.3 САМОСТОЯТЕЛЬНАЯ РАБОТА ПО ДИСЦИПЛИНЕ «РАСЧЕТ И МОДЕЛИРОВАНИЕ ГОРНЫХ МАШИН И ОБОРУДОВАНИЯ»

Оцениваемые компетенции ПК-6

В ходе изучения курса предусмотрено обязательное выполнение самостоятельной работы.

Цель выполнения самостоятельной работы — проверка и закрепление знаний, полученных обучающимися в процессе аудиторной и внеаудиторной проработки учебного материала, умения применять на практике приобретенные знания в пределах области исследования.

Самостоятельная работа содержит: самостоятельное изучение теоретического материала по темам рабочей программы, подготовка к практическим занятиям, ответы на контрольные вопросы, подготовка к зачету.

Тема1 Введение в методы конечных элементов. Основная идея. Терминология. Общие вопросы теории деформируемого твердого тела. Теоретические предпосылки.

- 1. Методы конечных элементов
- 2. Основная идея конечных элементов
- 3. Терминология дисциплины
- 4. Теория деформируемого твердого тела
- 5. Теоретические предпосылки

Тема 2. Модели поведения материалов. Области применения. Использование различными программами.

- 1. Задание граничных условий. Формирование внешних нагрузок, закреплений, сопряжений, начальных деформаций.
- 2. Понятие тензоров напряжений и деформаций.
- 3. Типы моделей поведения материалов. Модели плоского напряжённого и плоского деформированного состояния.
- 4. Пластичность материала. Диаграмма растяжения металлов.
- 5. Модели представления нелинейных свойств материалов.
- 6. Эффект Баушингера при различных моделях материала.

Тема 3 Современное программное обеспечение в области конечно-элементного решения задач. Возможности. Круг решаемых задач.

- 1. Построение 3D деталей в Autodesk Invtntor.
- 2. Составление сборок в Autodesk Invtntor.

Тема 4. Построение 3D деталей и сборочных единиц.

- 1. Формирование рабочих и сборочных чертежей в Autodesk Invtntor.
- 2. Статический анализ прочности с помощью МКЭ.

Тема 5. Задание граничных условий. Разбиение моделей на конечные элементы.

Задание типов сопряжений между контактирующими поверхностями

- 1. Задание граничных условий.
- 2. Разбиение моделей на конечные элементы.
- 3. Задание типов сопряжений между контактирующими поверхностями.

Тема 6. Особенности проведения прочностного анализа.

- 1. Прочностной анализ. Назначение.
- 2. Обшие понятия.

Тема 7. Особенности проведения модального анализа.

1Модальный анализ. Назначение.

2Общие понятия.

3. Факторы, оказывающие влияние на формирование частот собственных колебаний.

Тема 8 Представление результатов расчётов. Составление отчетов.

1. Составление отчётов по результатам статического и модального анализов в Autodesk Invtntor.

Вопросы для самостоятельной подготовки к зачету

- 1. Общие понятия и назначение метода конечных элементов (МКЭ).
- 2. Сетка конечных элементов. Виды элементов. Способы разбиения и задания размеров.
- 3. Виды проводимых анализов с помощью МКЭ и их назначение.
- 4. Задание граничных условий. Формирование внешних нагрузок, закреплений, сопряжений,

начальных деформаций.

- 5. Понятие тензоров напряжений и деформаций.
- 6. Типы моделей поведения материалов. Модели плоского напряжённого и плоского деформированного состояния.
- 7. Пластичность материала. Диаграмма растяжения металлов.
- 8. Модели представления нелинейных свойств материалов.
- 9. Эффект Баушингера при различных моделях материала.
- 10. Построение 3D деталей в Autodesk Invtntor.
- 11. Составление сборок в Autodesk Invtntor.
- 12. Формирование рабочих и сборочных чертежей в Autodesk Invtntor.
- 13. Статический анализ прочности с помощью МКЭ.
- 14. Модальный анализ. Назначение. Общие понятия. Факторы, оказывающие влияние на формирование частот собственных колебаний.
- 15. Составление отчётов по результатам статического и модального анализов в Autodesk Inventor.

6. ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ДИСЦИПЛИНЕ «РАСЧЕТ И МОДЕЛИРОВАНИЕ ГОРНЫХ МАШИН И ОБОРУДОВАНИЯ»

Оцениваемые компетенции – ПК-6

6.1. Методические материалы, определяющие процедуру проведения зачета.

Промежуточная аттестация обучающимися по дисциплине «Расчет и моделирование горных машин и оборудования» проводится в соответствии с ООП и является обязательной.

Промежуточная аттестация по дисциплине «Расчет и моделирование горных машин и оборудования» проводится в соответствии с учебным планом в виде зачета, который проводится в виде теста.

Обучающийся допускается к зачету по дисциплине в случае выполнения им учебного плана по дисциплине: выполненных и защищенных работ. В случае наличия учебной задолженности обучающийся отрабатывает пропущенные занятия в форме, предложенной преподавателем.

6.2 Подходы к отбору содержания, разработке структуры теста.

Тест состоит из 20 заданий с выбором одного или нескольких правильных ответов. Тест содержит вопросы из базы, сформированной в электронной системе обучения филиала КузГТУ (100 заданий по всем темам курса). Формирование теста происходит случайным образом, поэтому у каждого обучающегося свой набор заданий.

В процессе выполнения теста проверяется способность обучающихся применять полученные теоретические и практические знания для решения задач курса.

6.3 Система оценивания отдельных заданий и работы в целом.

Шкала оценивания теста:

выполнение менее 12 заданий- не зачет;

от 12 до 20 заданий- зачет.

6.4 Процедура выполнения и проверки теста.

Тест выполняется в компьютерном классе на последнем практическом занятии в семестре. Тест выполняется с использованием системы Moodle.

Время выполнения теста 30 минут. Инструктаж, предшествующий выполнения теста, не входит в указанное время.

Проверка правильности выполнения заданий производится автоматически после выполнения теста.

6.5 Дополнительные материалы.

В процессе выполнение теста использование дополнительной методической литературы, мобильных устройств связи и других источников информации не допускается.

Структурированная база контрольных учебных заданий для теста (Полная база заданий находится в электронной обучающей системе филиала КузГТУ в г. Белово http://eos.belovokyzgtv.ru/moodle

- 1. Что такое этап реализации?
- +: практическое применение модели и результатов моделирования
- -: теоретическое применение результатов программирования
- -: построение выводов по данным, полученным путем имитации
- 2: 3D Viewer это
- +: трехмерная визуализация
- -: двухмерная визуализация
- -: одномерная визуализация
- -: трехмерное проектирование
- 3: Adobe Illustrator-это
- +: векторный редактор
- -: растровый редактор
- -: фронтальный редактор
- -: оптимальный редактор
- 4: Adobe Photoshop- это
- +: растровый редактор
- -: векторный редактор
- -: фрактальный редактор
- -: линейный редактор
- 5: САЕ это
- +: автоматизированный инженерный анализ

- -: автоматизированный инженерный проект
- -: автоматизированный инженерный расчет
- -: автоматизированный инженерный просчет

6: САМ это

- +: автоматизированная подготовка производства
- -: автоматизированная подготовка расчетов
- -: автоматизированная подготовка моделирования
- -: автоматизированный расчет производства

7: САТІА - это система

- +: верхнего уровня
- -: низшего уровня
- -: среднего уровня
- -: базового уровня

8: CorelDraw-это

- +: векторный редактор
- -: растровый редактор
- -: фрактальный редактор

9: EPD позволяет

- +: уменьшить время выхода продукции на рынок, увеличивает качество, уменьшает затраты
- -: уменьшить время выхода продукции на рынок, увеличивает качество
- -: уменьшить время выхода продукции на рынок, уменьшает качество, уменьшает затраты
- -: увеличить время выхода продукции на рынок, увеличивает качество, уменьшает затраты 10: T-FLAX CAD 3D это система
- +: среднего уровня
- -: низшего уровня
- -: верхнего уровня
- -: высшего уровня

11: T-FLEX CAD 2D-это система

- +: нижнего уровня
- -: среднего уровня
- -: верхнего уровня
- -: высшего уровня

12: Алгоритм сортировки по глубине относится

- +: к алгоритмам, работающим в объектном пространстве
- -: к алгоритмам, работающим в пространстве изображения
- -: к алгоритмам, работающим в виртуальном пространстве

13: Ассоциативная геометрия базируется на

- +: непосредственной взаимосвязи между объектами
- -: посредственной взаимосвязи между объектами
- -: на алгебраических расчетах
- -: на специальных формулах

14: Базовым элементом для фрактальной графики является

- +: математическая формула
- -: точка

- -: линия
- -: набор линий

15: B Web оттенков цветов

- +: 256
- -: 156
- -: 356
- -: 56

16: В векторной графике объем данных для графического отображения объекта

- +: меньше чем в растровой графике
- -: больше чем в растровой графике
- -: одинаков с растровой графикой

17: В векторном редакторе элементарным объектом является

- +: линия
- -: точка
- -: плоскость
- -: треугольник

18: В векторных редакторах каждая линия рассматривается как математическая кривая

- +: третьего порядка
- -: второго порядка
- -: первого порядка
- -: четвертого порядка

19: В зависимости от принципа обработки геометрических элементов различают

- +: вариативные и генерирующие системы
- -: инвариативные и генерирующие системы
- -: вариативные и модульные системы
- -: социальные и генерирующие системы

20: В зависимости от способа формирования изображения компьютерная графика делится на

- +: растровую, векторную, фрактальную
- -: растровую, векторную, фронтальную
- -: растровую, векторную
- -: векторную, фрактальную

21: В каркасной модели хранится информация

- +: топологическая, геометрическая
- -: топологическая, геодезическая
- -: арифметическая, геометрическая
- -: топологическая, экономическая

22: В основе изменения графической информации лежат

- +: перенос, масштабирование и поворот
- -: копирование, масштабирование и поворот
- -: перенос, размещение и поворот
- -: перенос, масштабирование и раскраска

23: В перспективной проекции

- +: размеры объектов обратно пропорциональны их расстоянию от наблюдателя
- -: размеры объектов прямо пропорциональны их расстоянию от наблюдателя
- -: размеры объектов не зависят от их расстояния от наблюдателя

24: Виды трехмерных моделей

- +: каркасные, поверхностные, объемные
- -: каркасные, линейные, объемные
- -: линейные, поверхностные, объемные
- -: каркасные, поверхностные, литые

25: Восходящее проектирование ведется при наличии

- +: унифицированных элементов
- -: разнотипных элементов
- -: уникальных элементов
- -: сложных элементов

26: Все алгоритмы удаления скрытых линий и поверхностей можно разделить на

- +: 1. работающие в объектном пространстве
- 2. работающие в пространстве изображения
- -: 1. работающие в линейном пространстве
- 2. работающие в пространстве изображения
- -: 1. работающие в объектном пространстве
- 2. работающие в пространстве измерения
- -: 1. работающие в точечном пространстве
- 2. работающие в пространстве изображения

27: Все системы параметризации в современных CAD\CAM-системах используют

- +: третий уровень автоматизации
- -: второй уровень автоматизации
- -: первый уровень автоматизации
- -: без автоматизации

28: Геометрическая модель может быть

- +: каркасной, поверхностной и твердотельной
- -: каркасной, плоской и твердотельной
- -: каркасной, поверхностной и мягкотельной
- -: сплошной, поверхностной и твердотельной

29: Геометрическая модель может включать

- +: технологическую и вспомогательную информацию
- -: экономическую и вспомогательную информацию
- -: технологическую и экономическую информацию
- -: технологическую и информацию по безопасности

30: Геометрические объекты

- +: точка, линия, поверхность, тело
- -: точка, линия, поверхность
- -: точка, линия, тело
- -: линия, поверхность, тело

- 31: Геометрическое моделирование основывается на
- +: аналитической и дифференциальной геометрии, вычислительной математике, вариационном исчислении, топологии
- -: аналитической и дифференциальной геометрии, вычислительной математике, вариационном исчислении
- -: аналитической геометрии, вычислительной математике, вариационном исчислении, топологии
- -: аналитической и дифференциальной геометрии, вычислительной математике, топологии
- 32: Границы областей постоянной яркости кажутся
- +: более яркими
- -: менее яркими
- -: не отличаются
- 33: Два вида детализации
- +: нанесение заданного узора и создание неровностей
- -: нанесение заданного узора и создание точек
- -: нанесение заданного узора и создание линий
- -: нанесение заданного размера и создание неровностей
- 34: Для распечатки на лазерном принтере достаточно разрешения
- +: 152-200 dpi
- -: 122-200 dpi
- -: 152-300 dpi
- -: 52-100 dpi
- 35: Для ускорения графических изображений конструктор использует
- +: 3D мыши, 3D манипуляторы, трехмерные джойстики, спейсболы
- -: 3D манипуляторы, трехмерные джойстики, спейсболы
- -: 3D мыши, трехмерные джойстики, спейсболы
- -: 3D мыши, 3D манипуляторы, трехмерные джойстики
- 36: Для чего производится коррекция системы управления
- +: для обеспечения заданных показателей качества процесса управления
- -: для увеличения производительности системы
- -: для управления объектом по определенному закону
- 37: Для экранной копии достаточно разрешения
- +: 72 dpi
- -: 62 dpi
- -: 82 dpi
- -: 100 dpi
- 38: ДР это
- +: допуски расположения
- -: допуски расстояний
- -: допуски роспуска
- -: допуски разметки
- 39: ДФ это
- +: допуски формы
- -: допуски фаски

- -: допуски фактические
- -: допуски фиктивные
- 40: Если используется незамкнутый контур, его завершают командой
- +: конечная точка
- -: конечная линия
- -: конечная плоскость
- начальная точка
- 41: Если серию проекций объекта выводить с разных точек зрения, то создается впечатление что он
- +: вращается
- -: удаляется
- -: приближается
- 42: Жесткая параметризация это режим, где
- +: однозначно определена форма изделия
- -: примерно определена форма изделия
- -: определены две формы изделия
- -: определены три формы изделия
- 43: За счет чего достигается подобие физического реального явления и модели
- +: за счет равенства значений критериев подобности
- -: за счет соответствия физического реального явления и модели
- -: за счет равенства экспериментальных данных с теоретическими подобными
- 44: К моделям с явными РТС прибегают в случае
- +: если нет необходимости повторного использования
- -: если позволяет финансирование
- -: если есть мощные компьютеры
- 45: Как еще иногда называют имитационное моделирование
- +: методом статистического моделирования
- -: методом реального моделирования
- -: методом машинного эксперимента
- -: методом главного эксперимента
- 46: Какими могут быть средства декомпозиции
- +: материальными и абстрактными
- -: реальными и нереальными
- -: имитационными
- 47: Линиатура-это
- +: число линий на дюйм
- -: число точек на дюйм
- -: число линий на сантиметр
- -: число линий на миллиметр
- 48: Модель объекта-
- +: абстрактное представление, удовлетворяющее условию адекватности объекту и позволяющее осуществлять его визуализацию

- -: реальное представление, удовлетворяющее условию адекватности объекту и позволяющее осуществлять его визуализацию
- -: абстрактное представление, удовлетворяющее условию адекватности расчетам и позволяющее осуществлять его визуализацию
- -: абстрактное представление, удовлетворяющее условию адекватности объекту и позволяющее осуществлять его постройку
- 49: Модульность структуры состоит
- +: в разбиении программного массива на модули по функциональному признаку
- -: в построении модулей по иерархии
- -: на принципе вложенности с вертикальным управлением
- 50: На чертеже типовая деталь представляется
- +: с буквенными обозначениями РТС и таблицей типоразмеров
- -: с цифровыми обозначениями РТС и таблицей типоразмеров
- -: с буквенными обозначениями РТС и таблицей габаритов
- -: с буквенными обозначениями РТС и таблицей логотипов
- 51: Наиболее эффективным средством создания параметрических моделей является
- +: протоколирование диалога и его последующая обработка
- -: протоколирование монолога и его последующая обработка
- -: протоколирование разговора и его последующая обработка
- -: протоколирование диалога
- 52: Недостатком растровой графики является
- +: пикселизация изображения при увеличении
- -: сложность работы
- -: высокая стоимость
- -: затраты времени
- 53: Недостаток аппроксимации поверхности
- +: сохранение формы от количества граней
- -: сохранение формы от количества вершин
- -: сохранение формы от количества точек
- -: сохранение формы от мощности компьютера
- 54: Область на экране с постоянной яркостью на темном фоне кажется
- +: ярче
- -: тусклее
- -: не отличается
- 55: Область применения проектно-логического проектирования
- +: отдельные детали, функциональные узлы, готовые изделия
- -: функциональные узлы, готовые изделия
- -: отдельные детали, готовые изделия
- -: отдельные детали, функциональные узлы
- 56: Основное назначение САПР 2D
- +: изготовление чертежей с помощью ЭВМ
- -: изготовление моделей с помощью ЭВМ
- -: изготовление чертежей вручную
- -: расчет параметров

- 57: Отражение от объекта может быть
- +: диффузным и зеркальным
- -: дисперсным и зеркальным
- -: диффузным и стеклянным
- -: прямым и зеркальным
- 58. Оттенки это
- +: Блики и тени. Тон и структура поверхности
- -: Блики . Тон и структура поверхности
- -: Блики и тени. Тон поверхности
- -: Тон и структура поверхности
- 59: Параллельная коррекция системы управления позволяет
- +: обеспечить введение интегралов и производных от сигналов ошибки
- -: осуществить интегральные законы регулирования
- -: скорректировать АЧХ системы
- 60: Параметрическое конструирование позволяет
- +: легко изменить форму модели
- -: легко изменить цвет модели
- -: легко изменить шероховатость модели
- -: легко изменить цену модели
- 61: Параметрическое конструирование с неполным набором связей-это
- +: мягкая параметризация
- -: жесткая параметризация
- -: гибкая параметризация
- -: легкая параметризация
- 62: Подходы к созданию параметризованной геометрической модели
- +: параметрическое конструирование, ассоциативная геометрия, объектно-ориентированное конструирование
- -: ассоциативная геометрия, объектно-ориентированное конструирование
- -: параметрическое конструирование, объектно-ориентированное конструирование
- -: параметрическое конструирование, ассоциативная геометрия
- 63: Последовательная коррекция системы управления позволяет
- +: ввести в закон управления составляющие
- -: скорректировать АЧХ системы
- -: осуществить интегральные законы регулирования
- -: осуществить генеральные законы регулирования
- 64: При выборе пункта меню "Черчение"
- +: из верхней линейки появляются текстовые меню
- -: из нижней линейки появляются текстовые меню
- -: из боковой линейки появляются текстовые меню
- -: из правой линейки появляются текстовые меню
- 65: При проектировании систем управления решающее значение имеет
- +: рациональный выбор чувствительных элементов или датчиков этих систем
- -: массогабаритные показатели и мощность
- -: результат математического моделирования этих систем

66: Проектирование может быть

- +: нисходящим и восходящем
- -: нейтральным и восходящем
- -: нисходящим и постоянным
- -: простым и сложным

67: Протокол CALS-

- +: протокол цифровой передачи данных об изделии
- -: протокол цифрового персчета данных об изделии
- -: протокол буквенной передачи данных об изделии

68: Процесс проектирования подразделяется на

- +: стадии, этапы, проектные процедуры, операции
- -: стадии, этапы, проектные процедуры
- -: стадии, этапы, операции
- -: стадии, проектные процедуры, операции

69: ПЭОИ-ЕРО это

- +: полное электронное описание изделия
- -: первичное электронное описание изделия
- -: повторное электронное описание изделия
- -: полное электрическое описание изделия

70: Рабочий проект относится к

- +: стадии проектирования
- -: этапу проектирования
- -: этапу проектирования
- -: операции проектирования

71: Различают систему координат

- +: локальную и глобальную
- -: локальную и местную
- -: местную и глобальную
- -: локальную и гибкую

72: Разрешение оригинала измеряется в

- +: точках на дюйм
- -: точках на метр
- -: точках на литр
- -: точках на миллиметр

73 Разрешение-это

- +: количество точек на единицу длины
- -: количество точек на единицу ширины
- -: количество точек на единицу глубины
- -: количество точек на единицу объема

74: Растровые изображения, состоящие из точек характеризуются

- +: разрешением
- -: размером
- -: расстоянием

- -: разметкой
- 75: Резкий перепад яркости на граничных ребрах называется
- +: эффектом Маха
- -: синдромом Маха
- -: фугой Баха
- -: числом Маха
- 76: Результаты имитационного моделирования
- +: носят случайный характер, отражают лишь случайные сочетания действующих факторов, складывающихся в процессе моделирования
- -: являются неточными и требуют тщательного анализа
- -: являются источником информации для построения реального объекта
- 77: САПР в английской нотации
- +: CAD
- -: CAG
- -: CAQ
- -: CAL
- 78: Световая энергия, падающая на поверхность, может быть
- +: поглощена, отражена, пропущена
- -: поглощена, отражена
- -: поглощена, пропущена
- -: отражена, пропущена
- 79: Свойства отраженного света зависят от
- +: вида источника света, его ориентации, свойств поверхности
- -: вида источника света, его ориентации
- -: вида источника света, свойств поверхности
- -: размера источника света, его ориентации, свойств поверхности
- 80: Связи определяются
- +: в виде размерных, геометрических и алгебраических соотношений
- -: в виде размерных, геометрических соотношений
- -: в виде размерных, алгебраических соотношений
- -: в виде геометрических и алгебраических соотношений
- 81: Системы 2D моделирования распознают геометрические формы
- +: только на плоскости
- -: только в объеме
- -: на плоскости и в объеме
- 82: Системы смешивания цветов
- +: аддитивная и субтрактивная
- -: аддитивная и простая
- -: простая и субтрактивная
- -: аддитивная и субинтерактивная
- 83: Стандарт SGML позволяет
- +: унифицировать оформление отчетов
- -: унифицировать оформление расчетов

- -: унифицировать оформление заказов
- 84: Структурное подразделение систем осуществляется
- +: по правилам классификации
- -: по правилам разбиения
- -: по правилам моделирования

85: Типы поверхностей

- +: ортотропные, зеркальные, обратно отражаемые, со смешанным отражением
- -: ортотропные, зеркальные, обратно отражаемые
- -: ортотропные, обратно отражаемые, со смешанным отражением
- -: зеркальные, обратно отражаемые, со смешанным отражением

86: Тождественная декомпозиция это операция, в результате которой

- +: любая система превращается в саму себя
- -: средства декомпозиции тождественны
- -: система тождественна

87: Топологическая информация модели-это

- +: вершины и ребра
- -: координаты двух вершин
- -: координаты трех вершин
- -: ребра

88: Трехмерный перенос является

- +: простым расширением двухмерного
- -: сложным расширением двухмерного
- -: простым расширением одномерного
- -: пропорциональным расширением двухмерного

89: Фактурой называется

- +: детализация строения поверхности
- -: детализация цвета поверхности
- -: детализация тени на поверхности
- -: детализация рисунка на поверхности

90: Фичерсы являются

- +: параметризованными объектами
- -: простыми фигурами
- -: программами программирования
- -: базой данных

91: Фичерсы-это

- +: интеллектуальные конструированные элементы, которые "помнят" о своем окружении независимо от внесенных изменений
- -: интеллектуальные конструированные элементы, которые "помнят" о своем окружении в зависимости от внесенных изменений
- -: интеллектуальные конструированные элементы, которые "не помнят" о своем окружении независимо от внесенных изменений

92: Форма это

+: внешний вид объекта в сцене, его видимые границы и поля

- -: вннутренний вид объекта в сцене, его видимые границы и поля
- -: внешний вид объекта в сцене
- -: внешний вид объекта в сцене, его видимые границы

93: Формат IGES

- +: стандарт на передачу и обмен графическими данными между CALS системами
- -: стандарт на передачу графическими данными между CALS системами
- -: стандарт на обмен графическими данными между CALS системами
- -: стандарт на передачу и обмен графическими данными между любыми системами

94: Человеческим глазом могут быть обнаружены цвета

- +: красный, зеленый и синий
- -: красный, зеленый и голубой
- -: красный, зеленый и фиолетовый
- -: красный, зеленый и розовый

95: Чем выше требования к качеству тем

- +: выше должно быть разрешение оригинала
- -: ниже должно быть разрешение оригинала
- -: не влияет

96: Чем дальше расположен объект, тем в изображении он будет

- +: менее ярким
- -: более ярким
- -: не зависит

97: Что НЕ является видом обеспечения САПР

- +: финансовое
- -: техническое
- -: организационное
- -: методическое

98: Что понимают под классом

- +: совокупность объектов, обладающих некоторыми признаками общности
- -: последовательное разбиение подсистем в систему
- -: последовательное соединение подсистем в систему

99: Что понимают под синтезом структуры АСУ

- +: процесс перебора вариантов построения взаимосвязей элементов по заданным критериям и эффективности АСУ в целом
- -: процесс исследования, определяющий место эффективного элемента, как в физическом, так и техническом смысле
- -: процесс реализации процедур и программных комплексов для работы АСУ

100: Что понимают под структурой АСУ

- +: организованную совокупность ее элементов
- -: совокупность процедур программных комплексов для реализации АСУ
- -: взаимосвязь, определяющую место элемента, как в физическом, так и в техническом смысле

Оценочные средства проверки сформированности компетенций дисциплина __Расчет и моделирование горных машин и оборудования_____

специальность/направление подготовки ГЭ 20

ПК-6	Знать	1. Что такое этап реализации?	
		1. практическое применение модели и результатов моделирования	
		2. теоретическое применение результатов программирования	
		3. построение выводов по данным, полученным путем имитации	
		2: 3D Viewer это	
		1. трехмерная визуализация	
		2. двухмерная визуализация	
		3. одномерная визуализация	
		4. трехмерное проектирование	
		1. Трехмерное проектирование	
		3: Adobe Illustrator-это	
		1. векторный редактор	
		2. растровый редактор	
		3. фронтальный редактор	
		4. оптимальный редактор	
		1. оптимальный редактор	
		4: Adobe Photoshop- это	
		1. растровый редактор	
		2. векторный редактор	
		3. фрактальный редактор	
		4. линейный редактор	
		5: САЕ - это	
		1. автоматизированный инженерный анализ	
		2. автоматизированный инженерный проект	
		3. автоматизированный инженерный расчет	
		4. автоматизированный инженерный просчет	
		6: САМ это	
		1. автоматизированная подготовка производства	
		2. автоматизированная подготовка расчетов	
		3. автоматизированная подготовка моделирования	
		4. автоматизированный расчет производства	
	Уметь	1.EPD позволяет	
		1.уменьшить время выхода продукции на рынок, увеличивает	
		качество, уменьшает затраты	
		2. уменьшить время выхода продукции на рынок, увеличивает	
		качество	
		3. уменьшить время выхода продукции на рынок, уменьшает качество,	
		уменьшает затраты	

- -: увеличить время выхода продукции на рынок, увеличивает качество, уменьшает затраты
- 2. Определите в Web количествооттенков цветов
- 1.256
- 2.156
- 3.356
- 3. Определите типы геометрической модели
- 1. каркасная, поверхностная и твердотельная
- 2. каркасная, плоская и твердотельная
- 3. каркасная, поверхностная и мягкотельная
- 4. сплошная, поверхностная и твердотельная
- 4. Как различают зависимости от принципа обработки геометрических элементов
- 1. вариативные и генерирующие системы
- 2. инвариативные и генерирующие системы
- 3. вариативные и модульные системы
- 4. социальные и генерирующие системы

Владеть

- 1. Выберете дисциплины на которых основывается геометрическое моделирование
- 1. аналитической и дифференциальной геометрии, вычислительной математике, вариационном исчислении, топологии
- 2. аналитической и дифференциальной геометрии, вычислительной математике, вариационном исчислении
- 3. аналитической геометрии, вычислительной математике, вариационном исчислении, топологии
- 4. аналитической и дифференциальной геометрии, вычислительной математике, топологии
- 2. Выберете необходимые элементы конструктора для ускорения графических изображений
- 1. 3D мыши, 3D манипуляторы, трехмерные джойстики, спейсболы
- 2. 3D манипуляторы, трехмерные джойстики, спейсболы
- 3. 3D мыши, трехмерные джойстики, спейсболы
- 4. 3D мыши, 3D манипуляторы, трехмерные джойстики
- 3. За счет чего достигается подобие физического реального явления и модели
- 1. за счет равенства значений критериев подобности
- 2. за счет соответствия физического реального явления и модели
- 3. за счет равенства экспериментальных данных с теоретическими подобными