Тема: «Коэффициент корреляции Пирсона. Статистическая значимость. Доверительный интервал»

По выборке, извлеченной из генеральной совокупности, произведено измерение двух признаков X и Y, имеющих нормальное распределение.

Задание:

- 1. найти выборочный коэффициент корреляции $r_{\scriptscriptstyle B}$ между признаками X и Y;
- 2. при уровне значимости $\alpha=0.01$ проверить гипотезу H_0 о равенстве нулю генерального коэффициента корреляции r_Γ при конкурирующей гипотезе H_1 об отличии генерального коэффициента корреляции от нуля ($r_\Gamma \neq 0$);
- 3. найти интервальную оценку коэффициента корреляции при уровне значимости $\alpha = 0.05$.

Решение:

1. Для начала заполним вспомогательную электронную таблицу в приложении Libre Office Calc (Open Office Calc, Microsoft Office Excel) (рис. 1). Ячейки, выделенные серым цветом, заполняются значениями, соответствующими выбранному варианту задания. Пример приведен для выборки объемом n=20. В вариантах предлагаются выборки объемом n=22. В остальных ячейках вводятся формулы аналогично тому, как показано в примере на рис. 1.

	1		I	I					I	
	A	В	C	D	E	F	G	Н	I	J
1					Габлица №1. Исход	ные данные				
2	Nº	xi	yi	хср	уср				(yi-ycp)^2	(xi-xcp)(yi-ycp)
3	1					=B3-\$D\$3	=F3*F3	=C3-\$E\$3	=H3*H3	=F3*H3
3 4 5	2									
5	3									
6 7	4									
7	5									
8 9 10 11 12 13	6									
9	7) =CP3HA4(C3:C22)					
10	8									
11	9									
12	10			=CP3HA4(B3:B22)						
13	11			` ′	, ,					
14	12									
15	13									
16	14									
14 15 16 17 18	15									
18	16									
19	17									
19 20 21 22 23	18									
21	19									
22	20		C)/A414/CO.COO				C)/1414/CO.COO		CVANAGO-100V	C)/MANA/30: 300)
23	Сумма	=CNNINI(B3:B22)	=СУММ(С3:С22)				=CУММ(G3:G22)		=CYMM(13:122)	=CУММ(J3:J22)

Рис. 1. Исходные данные

Результат вычислений представлен на рис. 2.

	А	В	С	D	Е	F	G	Н	I	J
1				Табл	лица №1. Исх	одные данные				
2	Nº	xi	yi	хср	уср	хі-хср	(xi-xcp)^2	уі-уср	(yi-ycp)^2	(xi-xcp)(yi-ycp)
3	1	41,2	116,5			-1,53	2,3409	-10,385	107,84823	15,88905
4	2	48,1	124,6			5,37	28,8369	-2,285	5,221225	-12,27045
5	3	53,2	153,9			10,47	109,6209	27,015	729,81023	282,84705
6	4	39,1	99			-3,63	13,1769	-27,885	777,57323	101,22255
7	5	50,2	191,6			7,47	55,8009	64,715	4188,0312	483,42105
8	6	39	94,9			-3,73	13,9129	-31,985	1023,0402	119,30405
9	7	39,4	100,2			-3,33	11,0889	-26,685	712,08923	88,86105
10	8	50,2	178,6		2,73 126,885	7,47	55,8009	51,715	2674,4412	386,31105
11	9	48,3	118,7			5,57	31,0249	-8,185	66,994225	-45,59045
12	10	39,6	117	42,73		-3,13	9,7969	-9,885	97,713225	30,94005
13	11	41,3	81,7	42,75	120,003	-1,43	2,0449	-45,185	2041,6842	64,61455
14	12	35,2	88			-7,53	56,7009	-38,885	1512,0432	292,80405
15	13	47,9	159,4			5,17	26,7289	32,515	1057,2252	168,10255
16	14	34,6	124,4			-8,13	66,0969	-2,485	6,175225	20,20305
17	15	33,2	103,4			-9,53	90,8209	-23,485	551,54523	223,81205
18	16	35,7	94,9			-7,03	49,4209	-31,985	1023,0402	224,85455
19	17	36,8	90,8			-5,93	35,1649	-36,085	1302,1272	213,98405
20	18	50,8	180,5			8,07	65,1249	53,615	2874,5682	432,67305
21	19	44,5	152			1,77	3,1329	25,115	630,76323	44,45355
22	20	46,3	167,6			3,57	12,7449	40,715	1657,7112	145,35255
23	Сумма	854,6	2537,7				739,382		23039,646	3281,789

Рис. 2. Исходные данные. Результат

Далее по вычисленным в первой вспомогательной таблице значениям находим выборочный коэффициент корреляции по следующим формулам:

$$r_{B} = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{S_{x} S_{y}} \quad (n \le 30),$$
 (1)

$$r_{B} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sigma_{x} \sigma_{y}}$$
 (n>30), (2)

где n — объем выборки. Для выборки малого объема ($n \le 30$) коэффициент корреляции следует вычислять по формуле (1), где S_x и S_y — исправленные среднеквадратические отклонения, расчет которых осуществляется по формулам:

$$S_{x} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}},$$
(3)

$$S_{y} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}.$$
 (4)

Для выборок большого объема (n > 30) при расчете выборочного коэффициента корреляции можно использовать формулу (2), где σ_x и σ_y –

выборочные среднеквадратические отклонения, расчет которых осуществляется по формулам:

$$\sigma_{x} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(x_{i} - \overline{x} \right)^{2}}, \qquad (5)$$

$$\sigma_{y} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(y_{i} - \overline{y} \right)^{2}}. \tag{6}$$

Фигурирующие во всех вышеприведенных формулах выборочные средние значения признаков X и Y вычисляются следующим образом:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \,, \tag{7}$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i. \tag{8}$$

Для расчета коэффициента корреляции по вышеприведенным формулам создаем вторую таблицу и вводим формулы аналогично тому как показано на рис. 3.

25	Таблица №2. Коэффициент корреляции Пирсона							
26	Dx	=G23/(A22-1)	50814/4B0/B00					
27	Dy	=I23/(A22-1)	=ECЛИ(ABS(B30)<					
28	Sx	=КОРЕНЬ(В26)	о,о, связь					
29	Sy	=КОРЕНЬ(В27)	S(B30)<0,7;"связь					
30	rB	=J23/(A22-1)/(B28*B29)	средняя";"связь сильная"))					
	I D	-3231(A22-1)1(B26 B23)						

Рис. 3. Коэффициент корреляции Пирсона

Результат вычислений можно видеть на рис. 4.

25	Таблица №2. Коэффициент корреляции Пирсона						
26	Dx	38,91484211					
27	Dy	1212,612921					
28	Sx	6,238176184	связь сильная				
29	Sy	34,82259211					
30	rB	0,795130334					

Рис. 4. Коэффициент корреляции Пирсона. Результат

По полученному значению коэффициента корреляции r_B делают вывод о связи между признаками X и Y (прямая, в случае положительного коэффициента корреляции, и обратная, в случае отрицательного коэффициента корреляции), а также о тесноте этой связи согласно таблице 1.

Таблица 1

$ r_{\scriptscriptstyle B} $	Теснота (сила) корреляционной связи
От 0 до 0.3	Слабая
От 0.3 до 0.7	Средняя
Больше 0.7	Сильная

2. Даже наличие сильной связи между признаками в выборочных данных не дает права утверждать, что коэффициент корреляции между признаками в генеральной совокупности также значимо отличается от нуля. В связи с этим возникает необходимость оценки значимости коэффициента корреляции, для чего используется t-критерий Стьюдента.

Для начала выдвигаются две противоположные гипотезы:

 $H_{\scriptscriptstyle 0}$: корреляция между X и Y не отличается от нуля ($r_{\scriptscriptstyle \Gamma}=0$).

 H_1 : корреляция между X и Y достоверно отличается от нуля ($r_{\Gamma} \neq 0$). Затем вычисляется значение $t_{{\scriptscriptstyle Ha67}}$:

$$t_{Ha6\pi} = \frac{r_B}{\sqrt{1 - r_B^2}} \sqrt{(n - 2)} \ . \tag{9}$$

Для его вычисления строится очередная таблица (рис. 5). Выделенные на рисунке серым цветом ячейки заполняются самостоятельно. Уровень значимости α оставляем равным 0.05 как на рис. 5.

32		Таблица №3. Значимость коэффициента корреляции						
33	rB	rB tнабл		k	tκp = t(α,k)	Принимаемая гипотеза		
34	=B30	=А34/КОРЕНЬ(1-А34*А34)*КОРЕНЬ(А22-2)	0,05	=A22-2	2,1009	=ECЛИ(ABS(B34) <c34;"h0";"h1")< th=""></c34;"h0";"h1")<>		

Рис. 5. Значимость коэффициента корреляции

Вышеприведенная величина имеет распределение Стьюдента с n-2 степенями свободы, поэтому полученное значение сравнивается с критическим значением t-критерия Стьюдента $t_{\kappa p}$. Это значение находится по таблице критических точек распределения Стьюдента с учетом заданного уровня значимости α и числа степеней свободы n-2. Данную таблицу можно найти в Приложении N2 к методическим материалам Ермаковой И. А. «Математика: математическая статистика».

Если $|t_{{\scriptscriptstyle Hadon}}| < t_{{\scriptscriptstyle \kappa p}}$, то делают вывод о справедливости гипотезы $H_{\scriptscriptstyle 0}$. В противном случае гипотеза $H_{\scriptscriptstyle 0}$, утверждающая равенство нулю коэффициента корреляции, отвергается при данном уровне значимости и принимается гипотеза $H_{\scriptscriptstyle 1}$.

Таким образом, делается вывод о том, присутствует ли между исследуемыми признаками корреляционная взаимосвязь. Результат вычислений показан на рис. 6.

32	Таблица №3. Значимость коэффициента корреляции								
33	rB tнабл		α	k	tκp = t(α,k)	Принимаемая гипотеза			
34	0,795130334	5,562727065	0,05	18	2,1009	H1			

Рис. 6. Значимость коэффициента корреляции. Результат

3. В случае небольшого объема выборки распределение коэффициента корреляции существенно отличается от нормального. В этом случае для вычисления границ доверительного интервала можно использовать преобразование, предложенное Р. Фишером:

$$z = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right). \tag{10}$$

Распределение величины z, определенной соотношением (10), уже при небольших n с хорошим приближением можно считать нормальным со среднеквадратическим отклонением:

$$S_z = \frac{1}{\sqrt{n-3}}. ag{11}$$

В этом случае для величины z можно построить доверительный интервал со следующими границами:

$$z_{l} = z - z_{1-\alpha/2} \cdot S_{z},$$

$$z_{r} = z + z_{1-\alpha/2} \cdot S_{z}.$$
(12)

Значение $z_{1-\alpha/2}$ можно получить из все той же таблицы критических точек распределения Стьюдента при уровне значимости α и бесконечном количестве степеней свободы, поскольку в этом случае распределение Стьюдента приближается к нормальному.

Воспользовавшись затем обратным преобразованием Фишера получим границы доверительного интервала для коэффициента корреляции r_{Γ} :

$$r_1 = \operatorname{th}(z_1),$$

$$r_2 = \operatorname{th}(z_2).$$
(12)

Для проведения вычислений по вышеприведенным формулам создаем последнюю таблицу, представленную на рис. 7.

36	Таблица №4. Интервальная оценка коэффициента корреляции							
37	Z	$z(1-\alpha/2)=t(\alpha,\infty)$	z1	z2	r1	r2		
38	=0,5*LN((1+A34)/(1-A34))	=1/KOPEHb(A22-3)	1,96	=A38-C38*B38	=A38+C38*B38	=TANH(D38)	=TANH(E38)	

Рис. 7. Интервальная оценка коэффициента корреляции

Результат вычислений представлен на рис. 8.

36	Таблица №4. Интервальная оценка коэффициента корреляции								
37	Z	Sz	z(1-α/2)=t(α,∞)	z1	z2	r1	r2		
38	1,085229453	0,242535625	1,96	0,609859628	1,560599278	0,5440282797	0,915517489		

Рис. 8. Интервальная оценка коэффициента корреляции. Результат

Варианты заданий

1.

2.

(28.4, 45.3) (19.4, 26.3) (36.2, 58.9) (29.2, 59.6) (29.8, 64.8) (31.0, 47.6) (41.0, 82.3) (21.9, 26.8) (32.2, 64.8) (39.0, 81.2) (24.6, 35.1) (22.7, 32.7) (26.0, 41.8) (39.1, 53.4) (40.4, 64.5) (38.6, 75.2) (33.7, 46.6) (41.6, 64.1) (33.6, 79.6) (17.8, 28.6) (35.2, 64.3) (39.1, 72.8)

4.

(30.5, -68.6) (37.7,-103.2) (39.6,-136.6) (36.7,-120.7) (38.6, -92.5) (28.2, -87.6) (37.4, -95.6) (28.3, -83.1) (40.0,-133.4) (31.9, -58.6) (27.3, -62.8) (25.7, -81.2) (30.8, -65.7) (38.3, -70.1) (34.8,-113.6) (26.3, -86.7) (35.7, -89.5) (40.2,-128.0) (29.6, -92.4) (30.9, -94.7) (39.7,-132.5) (38.8, -87.3)

5.

(36.1, -95.9) (49.8, -124.4) (61.2, -118.9) (11.1, -23.9) (56.4, -153.6) (48.4, -136.2) (66.1, -160.1) (25.0, -38.8) (38.3, -103.1) (32.6, -83.5) (45.6, -82.3) (34.0, -63.9) (42.1, -111.5) (31.4, -74.4) (29.0, -55.0) (16.9, -31.9) (43.1, -63.4) (40.0, -59.1) (40.4, -98.1) (34.2, -58.4) (27.4, -54.2) (34.6, -96.1)

6.

(56.1,-179.9) (44.9,-126.9) (54.5,-108.3) (45.6, -98.2) (59.2,-171.2) (38.0,-101.3) (60.9,-176.6) (37.3,-133.8) (49.4,-101.7) (43.7,-146.4) (46.0,-101.1) (41.0,-148.9) (56.9,-133.2) (57.3,-131.2) (41.9,-103.9) (41.6,-100.4) (56.2,-107.6) (47.1,-172.7) (39.7,-123.1) (46.5,-126.2) (54.1,-177.6) (52.1,-132.6)

7.

(40.6, -93.3) (14.3, -30.0) (29.6, -60.2) (16.7, -42.8) (15.5, -53.8) (28.7, -105.9) (50.2, -187.4) (60.8, -166.7) (31.9, -80.8) (26.8, -75.0) (40.6, -153.3) (37.1, -74.2) (45.5, -138.4) (30.4, -68.4) (34.4, -95.1) (52.7, -186.6) (55.8, -112.3) (28.3, -96.6) (30.5, -63.0) (65.7, -233.6) (36.5, -81.6) (43.7, -119.8)

(29.6, 60.8) (30.3, 64.8) (45.1, 121.0) (31.6, 65.1) (26.6, 71.4) (33.3, 67.0) (15.4, 23.7) (45.6, 75.8) (29.5, 51.0) (46.3, 108.1) (29.8, 73.2) (17.7, 32.9) (31.4, 71.6) (31.2, 42.9) (26.8, 47.7) (33.2, 55.3) (29.8, 80.7) (30.8, 66.3) (35.5, 53.4) (23.2, 51.5) (16.2, 41.9) (25.2, 61.8)

9.

(23.0, -64.2) (45.3, -96.5) (51.5, -148.9) (50.9, -118.5) (58.6, -151.8) (33.6, -65.7) (31.2, -83.0) (35.3, -68.9) (49.8, -87.0) (38.5, -58.9) (32.9, -71.8) (54.4, -103.4) (39.3, -58.7) (46.0, -107.7) (25.0, -43.4) (31.6, -70.0) (29.0, -76.4) (27.4, -56.9) (46.4, -111.0) (35.0, -71.5) (39.5, -104.4) (27.1, -47.6)

10.

(35.2, 64.3) (39.1, 72.8) (39.0, 59.9) (30.9, 58.7) (21.4, 42.5) (48.1, 98.5) (29.4, 56.8) (22.1, 35.6) (28.1, 61.0) (38.3, 78.0) (29.7, 55.1) (62.2, 110.4) (39.6, 73.1) (27.1, 58.3) (40.0, 73.3) (30.2, 47.2) (17.4, 22.6) (36.2, 49.7) (28.1, 38.3) (30.2, 53.5) (19.5, 43.7) (31.1, 73.7)

11.

(56.1,-179.9) (44.9,-126.9) (54.5,-108.3) (45.6, -98.2) (59.2,-171.2) (38.0,-101.3) (60.9,-176.6) (37.3,-133.8) (49.4,-101.7) (43.7,-146.4) (46.0,-101.1) (41.0,-148.9) (56.9,-133.2) (57.3,-131.2) (41.9,-103.9) (41.6,-100.4) (56.2,-107.6) (47.1,-172.7) (39.7,-123.1) (46.5,-126.2) (54.1,-177.6) (52.1,-132.6)

12.

(40.6, -93.3) (14.3, -30.0) (29.6, -60.2) (16.7, -42.8) (15.5, -53.8) (28.7, -105.9) (50.2, -187.4) (60.8, -166.7) (31.9, -80.8) (26.8, -75.0) (40.6, -153.3) (37.1, -74.2) (45.5, -138.4) (30.4, -68.4) (34.4, -95.1) (52.7, -186.6) (55.8, -112.3) (28.3, -96.6) (30.5, -63.0) (65.7, -233.6) (36.5, -81.6) (43.7, -119.8)

(29.6, 60.8) (30.3, 64.8) (45.1, 121.0) (31.6, 65.1) (26.6, 71.4) (33.3, 67.0) (15.4, 23.7) (45.6, 75.8) (29.5, 51.0) (46.3, 108.1) (29.8, 73.2) (17.7, 32.9) (31.4, 71.6) (31.2, 42.9) (26.8, 47.7) (33.2, 55.3) (29.8, 80.7) (30.8, 66.3) (35.5, 53.4) (23.2, 51.5) (16.2, 41.9) (25.2, 61.8)

14.

(23.0, -64.2) (45.3, -96.5) (51.5, -148.9) (50.9, -118.5) (58.6, -151.8) (33.6, -65.7) (31.2, -83.0) (35.3, -68.9) (49.8, -87.0) (38.5, -58.9) (32.9, -71.8) (54.4, -103.4) (39.3, -58.7) (46.0, -107.7) (25.0, -43.4) (31.6, -70.0) (29.0, -76.4) (27.4, -56.9) (46.4, -111.0) (35.0, -71.5) (39.5, -104.4) (27.1, -47.6)

15.

(35.2, 64.3) (39.1, 72.8) (39.0, 59.9) (30.9, 58.7) (21.4, 42.5) (48.1, 98.5) (29.4, 56.8) (22.1, 35.6) (28.1, 61.0) (38.3, 78.0) (29.7, 55.1) (62.2, 110.4) (39.6, 73.1) (27.1, 58.3) (40.0, 73.3) (30.2, 47.2) (17.4, 22.6) (36.2, 49.7) (28.1, 38.3) (30.2, 53.5) (19.5, 43.7) (31.1, 73.7)

16.

(50.0, -92.8) (27.4, -49.5) (47.7,-105.8) (35.1, -67.0) (30.5, -55.7) (39.5, -67.3) (54.8, -89.1) (57.3,-134.2) (43.0,-109.1) (43.7, -68.7) (34.6, -74.6) (47.2,-105.6) (42.4, -106.2) (57.6, -164.1) (38.8, -59.7) (37.3, -81.7) (35.5, -67.2) (41.9, -119.3) (23.0, -64.2) (45.3, -96.5) (51.5, -148.9) (50.9, -118.5)

17.

(62.1, -89.2) (17.3, -40.6) (36.8, -81.4) (31.3, -50.0) (33.7, -56.3) (36.0, -49.6) (48.5, -65.2) (16.3, -22.2) (22.3, -47.2) (32.2, -70.4) (48.0, -87.9) (27.0, -45.5) (36.1, -49.7) (35.6, -65.8) (39.7, -84.2) (23.9, -53.5) (49.2, -83.7) (22.4, -27.8) (23.4, -51.7) (35.7, -83.6) (46.0, -101.2) (52.4, -109.1)

(28.4, 45.3) (19.4, 26.3) (36.2, 58.9) (29.2, 59.6) (29.8, 64.8) (31.0, 47.6) (41.0, 82.3) (21.9, 26.8) (32.2, 64.8) (39.0, 81.2) (24.6, 35.1) (22.7, 32.7) (26.0, 41.8) (39.1, 53.4) (40.4, 64.5) (38.6, 75.2) (33.7, 46.6) (41.6, 64.1) (33.6, 79.6) (17.8, 28.6) (35.2, 64.3) (39.1, 72.8)

19.

(30.5, -68.6) (37.7,-103.2) (39.6,-136.6) (36.7,-120.7) (38.6, -92.5) (28.2, -87.6) (37.4, -95.6) (28.3, -83.1) (40.0,-133.4) (31.9, -58.6) (27.3, -62.8) (25.7, -81.2) (30.8, -65.7) (38.3, -70.1) (34.8,-113.6) (26.3, -86.7) (35.7, -89.5) (40.2,-128.0) (29.6, -92.4) (30.9, -94.7) (39.7,-132.5) (38.8, -87.3)

20.

(36.1, -95.9) (49.8, -124.4) (61.2, -118.9) (11.1, -23.9) (56.4, -153.6) (48.4, -136.2) (66.1, -160.1) (25.0, -38.8) (38.3, -103.1) (32.6, -83.5) (45.6, -82.3) (34.0, -63.9) (42.1, -111.5) (31.4, -74.4) (29.0, -55.0) (16.9, -31.9) (43.1, -63.4) (40.0, -59.1) (40.4, -98.1) (34.2, -58.4) (27.4, -54.2) (34.6, -96.1)

21.

(50.0, -92.8) (27.4, -49.5) (47.7,-105.8) (35.1, -67.0) (30.5, -55.7) (39.5, -67.3) (54.8, -89.1) (57.3,-134.2) (43.0,-109.1) (43.7, -68.7) (34.6, -74.6) (47.2,-105.6) (42.4, -106.2) (57.6, -164.1) (38.8, -59.7) (37.3, -81.7) (35.5, -67.2) (41.9, -119.3) (23.0, -64.2) (45.3, -96.5) (51.5, -148.9) (50.9, -118.5)

22.

(62.1, -89.2) (17.3, -40.6) (36.8, -81.4) (31.3, -50.0) (33.7, -56.3) (36.0, -49.6) (48.5, -65.2) (16.3, -22.2) (22.3, -47.2) (32.2, -70.4) (48.0, -87.9) (27.0, -45.5) (36.1, -49.7) (35.6, -65.8) (39.7, -84.2) (23.9, -53.5) (49.2, -83.7) (22.4, -27.8) (23.4, -51.7) (35.7, -83.6) (46.0, -101.2) (52.4, -109.1)

(28.4, 45.3) (19.4, 26.3) (36.2, 58.9) (29.2, 59.6) (29.8, 64.8) (31.0, 47.6) (41.0, 82.3) (21.9, 26.8) (32.2, 64.8) (39.0, 81.2) (24.6, 35.1) (22.7, 32.7) (26.0, 41.8) (39.1, 53.4) (40.4, 64.5) (38.6, 75.2) (33.7, 46.6) (41.6, 64.1) (33.6, 79.6) (17.8, 28.6) (35.2, 64.3) (39.1, 72.8)

24.

(30.5, -68.6) (37.7,-103.2) (39.6,-136.6) (36.7,-120.7) (38.6, -92.5) (28.2, -87.6) (37.4, -95.6) (28.3, -83.1) (40.0,-133.4) (31.9, -58.6) (27.3, -62.8) (25.7, -81.2) (30.8, -65.7) (38.3, -70.1) (34.8,-113.6) (26.3, -86.7) (35.7, -89.5) (40.2,-128.0) (29.6, -92.4) (30.9, -94.7) (39.7,-132.5) (38.8, -87.3)

25.

(36.1, -95.9) (49.8,-124.4) (61.2,-118.9) (11.1, -23.9) (56.4,-153.6) (48.4,-136.2) (66.1,-160.1) (25.0, -38.8) (38.3,-103.1) (32.6, -83.5) (45.6, -82.3) (34.0, -63.9) (42.1,-111.5) (31.4, -74.4) (29.0, -55.0) (16.9, -31.9) (43.1, -63.4) (40.0, -59.1) (40.4, -98.1) (34.2, -58.4) (27.4, -54.2) (34.6, -96.1)

26.

(56.1,-179.9) (44.9,-126.9) (54.5,-108.3) (45.6, -98.2) (59.2,-171.2) (38.0,-101.3) (60.9,-176.6) (37.3,-133.8) (49.4,-101.7) (43.7,-146.4) (46.0,-101.1) (41.0,-148.9) (56.9,-133.2) (57.3,-131.2) (41.9,-103.9) (41.6,-100.4) (56.2,-107.6) (47.1,-172.7) (39.7,-123.1) (46.5,-126.2) (54.1,-177.6) (52.1,-132.6)

27.

(40.6, -93.3) (14.3, -30.0) (29.6, -60.2) (16.7, -42.8) (15.5, -53.8) (28.7, -105.9) (50.2, -187.4) (60.8, -166.7) (31.9, -80.8) (26.8, -75.0) (40.6, -153.3) (37.1, -74.2) (45.5, -138.4) (30.4, -68.4) (34.4, -95.1) (52.7, -186.6) (55.8, -112.3) (28.3, -96.6) (30.5, -63.0) (65.7, -233.6) (36.5, -81.6) (43.7, -119.8)

(29.6, 60.8) (30.3, 64.8) (45.1, 121.0) (31.6, 65.1) (26.6, 71.4) (33.3, 67.0) (15.4, 23.7) (45.6, 75.8) (29.5, 51.0) (46.3, 108.1) (29.8, 73.2) (17.7, 32.9) (31.4, 71.6) (31.2, 42.9) (26.8, 47.7) (33.2, 55.3) (29.8, 80.7) (30.8, 66.3) (35.5, 53.4) (23.2, 51.5) (16.2, 41.9) (25.2, 61.8)

29.

(23.0, -64.2) (45.3, -96.5) (51.5, -148.9) (50.9, -118.5) (58.6, -151.8) (33.6, -65.7) (31.2, -83.0) (35.3, -68.9) (49.8, -87.0) (38.5, -58.9) (32.9, -71.8) (54.4, -103.4) (39.3, -58.7) (46.0, -107.7) (25.0, -43.4) (31.6, -70.0) (29.0, -76.4) (27.4, -56.9) (46.4, -111.0) (35.0, -71.5) (39.5, -104.4) (27.1, -47.6)

30.

(35.2, 64.3) (39.1, 72.8) (39.0, 59.9) (30.9, 58.7) (21.4, 42.5) (48.1, 98.5) (29.4, 56.8) (22.1, 35.6) (28.1, 61.0) (38.3, 78.0) (29.7, 55.1) (62.2, 110.4) (39.6, 73.1) (27.1, 58.3) (40.0, 73.3) (30.2, 47.2) (17.4, 22.6) (36.2, 49.7) (28.1, 38.3) (30.2, 53.5) (19.5, 43.7) (31.1, 73.7)

31.

(30.5, -68.6) (37.7,-103.2) (39.6,-136.6) (36.7,-120.7) (38.6, -92.5) (28.2, -87.6) (37.4, -95.6) (28.3, -83.1) (40.0,-133.4) (31.9, -58.6) (27.3, -62.8) (25.7, -81.2) (30.8, -65.7) (38.3, -70.1) (34.8,-113.6) (26.3, -86.7) (35.7, -89.5) (40.2,-128.0) (29.6, -92.4) (30.9, -94.7) (39.7,-132.5) (38.8, -87.3)

32.

(36.1, -95.9) (49.8,-124.4) (61.2,-118.9) (11.1, -23.9) (56.4,-153.6) (48.4,-136.2) (66.1,-160.1) (25.0, -38.8) (38.3,-103.1) (32.6, -83.5) (45.6, -82.3) (34.0, -63.9) (42.1,-111.5) (31.4, -74.4) (29.0, -55.0) (16.9, -31.9) (43.1, -63.4) (40.0, -59.1) (40.4, -98.1) (34.2, -58.4) (27.4, -54.2) (34.6, -96.1)